33 research outputs found

    Esports Skills are People Skills

    Get PDF

    Fast, accurate and automatic ancient nucleosome and methylation maps with epiPALEOMIX

    Get PDF
    The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range of DNA preparation types than previously thought, including when no particular experimental procedures have been used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA associated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts

    Pamidronate “zebra lines”:A treatment timeline

    Get PDF
    Osteogenesis imperfecta is a hereditary bone dysplasia characterized by bone fragility, deformity, and short stature. Treatment focuses on preventing bone fractures and symptom relief. Pamidronate, a second-generation bisphosphonate drug that minimizes bone loss, is the chosen treatment in osteogenesis imperfecta. Radiologically, each cycle of pamidronate treatment is depicted as a line of sclerosed nondecalcified cartilage at the metaphysis, termed a pamidronate line. In this case report, we demonstrate that a treatment timeline can be visualized on plain radiographs as the number and spacing of pamidronate lines reflects the number and timing of treatment cycles. The educational value of this is to reassure physicians of the benign nature of “zebra lines,” to demonstrate that the pamidronate lines migrate and fade with bone growth, and alert physicians that the lack of expected pamidronate lines during treatment may reflect a change in the patient's condition that reduces the effectiveness of bisphosphonate infusions

    Combining bleach and mild predigestion improves ancient DNA recovery from bones.

    Get PDF
    The feasibility of genome-scale studies from archaeological material remains critically dependent on the ability to access endogenous, authentic DNA. In the majority of cases, this represents a few per cent of the DNA extract, at most. A number of specific pre-extraction protocols for bone powder aimed to improve ancient DNA recovery before library amplification have recently been developed. Here, we test the effects of combining two of such protocols, a bleach wash and a predigestion step, on 12 bone samples of Atlantic cod and domestic horse aged 750-1350 cal. years before present. Using high-throughput sequencing, we show that combined together, bleach wash and predigestion consistently yield DNA libraries with higher endogenous content than either of these methods alone. Additionally, the molecular complexity of these libraries is improved and endogenous DNA templates show larger size distributions. Other library characteristics, such as DNA damage profiles or the composition of microbial communities, are little affected by the pre-extraction protocols. Application of the combined protocol presented in this study will facilitate the genetic analysis of an increasing number of ancient remains and will reduce the cost of whole-genome sequencing

    Targeted conservation genetics of the endangered chimpanzee

    Get PDF
    Populations of the common chimpanzee (Pan troglodytes) are in an impending risk of going extinct in the wild as a consequence of damaging anthropogenic impact on their natural habitat and illegal pet and bushmeat trade. Conservation management programmes for the chimpanzee have been established outside their natural range (ex situ), and chimpanzees from these programmes could potentially be used to supplement future conservation initiatives in the wild (in situ). However, these programmes have often suffered from inadequate information about the geographical origin and subspecies ancestry of the founders. Here, we present a newly designed capture array with ~60,000 ancestry informative markers used to infer ancestry of individual chimpanzees in ex situ populations and determine geographical origin of confiscated sanctuary individuals. From a test panel of 167 chimpanzees with unknown origins or subspecies labels, we identify 90 suitable non-admixed individuals in the European Association of Zoos and Aquaria (EAZA) Ex situ Programme (EEP). Equally important, another 46 individuals have been identified with admixed subspecies ancestries, which therefore over time, should be naturally phased out of the breeding populations. With potential for future re-introduction to the wild, we determine the geographical origin of 31 individuals that were confiscated from the illegal trade and demonstrate the promises of using non-invasive sampling in future conservation action plans. Collectively, our genomic approach provides an exemplar for ex situ management of endangered species and offers an efficient tool in future in situ efforts to combat the illegal wildlife trade.PF is supported by the Innovation Fund Denmark doctoral fellowship programme and the Candys Foundation. CF is supported by “la Caixa” doctoral fellowship programme. TSK is funded by Carlsberg grant CF19-0712 prepared within the framework of the HSE University Basic Research Program. TMB is supported by BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International Early Career, Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880). EL is supported by CGL2017-82654-P (MINECO/FEDER, UE).Peer reviewe
    corecore