142 research outputs found

    Negative regulation of transcription coactivator p300 by orphan receptor TR3

    Get PDF
    p300 regulates the transcriptional activity of a variety of transcription factors by forming an activation complex and/or promoting histone acetylation. Here, we show a unique characteristic of orphan receptor TR3 in negatively regulating the function of p300. TR3 was found to interact with p300 and inhibited the acetylation of transcription factors induced by p300, resulting in the repression of their transcriptional activity. Further analysis revealed that both a conserved transcriptional adapter motif (TRAM) in p300 and a specific sequence FLELFIL in TR3 were critical for their interaction. TR3 binding completely covered the histone acetyltransferase (HAT) domain of p300 and resulted in suppression of the HAT activity, as the p300-induced histone H3 acetylation and transcription were inhibited with the presence TR3. Furthermore, an agonist of TR3, a natural octaketide isolated from Dothiorella sp. HTF3 of an endophytical fungus, was shown to be a potent compound for inhibiting p300 HAT activity (IC50=1.5 mu g/ml) in vivo. More importantly, this agonist could repress the transcriptional activity of transcription factors, and proliferation of cancer cells. Taken together, our results not only delineate a novel transcriptional repressor function for TR3, but also reveal its modulation on p300 HAT activity as the underlying mechanism

    A multiphase-field model for simulating the hydrogen-induced multi-spot corrosion on the surface of polycrystalline metals: Application to uranium metal

    Full text link
    Hydrogen-induced multi-spot corrosion on the surface of polycrystalline rare metals is a complex process, which involves the interactions between phases (metal, hydride and oxide), grain orientations, grain boundaries, and corrosion spots. To accurately simulate this process and comprehend the underlying physics, a theoretical method is required that includes the following mechanisms: i) hydrogen diffusion, ii) phase transformation, iii) elastic interactions between phases, especially, the interactions between the oxide film and the hydride, iv) elastic interactions between grains, and v) interactions between hydrogen solutes and grain boundaries. In this study, we report a multiphase-field model that incorporates all these requirements, and conduct a comprehensive study of hydrogen-induced spot corrosion on the uranium metal surface, including the investigation of the oxide film, multi-spot corrosion, grain orientation, and grain boundary in the monocrystal, bicrystal, and polycrystal systems. The results indicate that the oxide film can inhibit the growth of hydrides and plays a crucial role in determining the correct morphology of the hydride at the triple junction of phases. The elastic interaction between multiple corrosion spots causes the merging of corrosion spots and promotes the growth of hydrides. The introduction of grain orientations and grain boundaries results in a variety of intriguing intracrystalline and intergranular hydride morphologies. The model presented here is generally applicable to the hydrogen-induced multi-spot corrosion on any rare metal surface.Comment: 22 pages (text), 16 figures (text), 2 table (text), 8 pages (SI), 12 figures (SI

    Cyclic threshold shear strain for pore water pressure generation and stiffness degradation in marine clays at Yangtze estuary

    Get PDF
    Cyclic threshold shear strain is a fundamental property of saturated soils under cyclic loading. To investigate the cyclic threshold shear strain for pore water pressure generation (Ī³tp) and stiffness degradation (Ī³td), a series of strain-controlled multistage undrained cyclic triaxial tests were carried out on in-situ saturated marine clay in the Yangtze estuary with different plasticity index Ip. The test results show that both Ī³tp and Ī³td increase with increasing Ip, and Ī³tp is larger than Ī³td for the same marine clay tested under the same conditions, with Ī³tp = 0.017 ~ 0.019%, Ī³td = 0.008 ~ 0.012% for Ip of 17, Ī³tp = 0.033 ~ 0.039%, Ī³td = 0.020 ~ 0.025% for Ip of 32, and Ī³tp = 0.040 ~ 0.048%, Ī³td = 0.031 ~ 0.036% for Ip of 40. Moreover, the development of stiffness degradation may not necessarily require the generation of pore water pressure but can be aggravated by it. Furthermore, the Ī³tp and Ī³td of marine clay are compared with terrestrial soils and marine clays cited from the published literature, the results indicate that the special marine sedimentary environment and the combined action of flow and tidal wave system cause the Ī³tp and Ī³td of marine clay in the Yangtze estuary to be smaller than that of the terrestrial clays and marine clays in other sea areas

    The Role of COL5A2 in Patients With Muscle-Invasive Bladder Cancer: A Bioinformatics Analysis of Public Datasets Involving 787 Subjects and 29 Cell Lines

    Get PDF
    Bladder cancer (BC) is one of the most common malignancies. Two previous studies identified collagen type V alpha 2 (COL5A2) as a potential biomarker in BC, both are simple reanalysis of a single transcriptomic dataset without subgroup analysis for muscle-invasive BC (MIBC). We focused in MIBC patients and explored the role of COL5A2 from an integration perspective, using refined methodology covering individual participant data meta-analysis and bioinformatics analysis. Eight transcriptomic datasets of 787 MIBC patients (including one dataset containing genomic mutation information) and two drug sensitivity datasets of 29 cell lines in which more than 250 compounds were analyzed. We found subjects with increased COL5A2 gene expression exhibited poorer prognosis, and the power analysis confirmed adequate sample size. FGFR3 was the only gene differential mutated between the COL5A2 high and low expression groups. Differential expression and co-expression network analysis suggested potential association between COL5A2 expression and essential pathways involved in cancer invasion and dissemination, including cell adhesion, extracellular matrix organization, and epithelial-mesenchymal transition. Coordinately, analysis of drug screening datasets and gene-drug interaction also revealed COL5A2 expression linked to cell morphogenesis, angiogenesis, blood vessel development, and urogenital development. The utility and feasibility of COL5A2 for clinically applicable prognosis prediction and risk classification and the exact underlying molecular mechanism should be further investigated in subsequent studies

    The role of vimentin in regulating cell-invasive migration in dense cultures of breast carcinoma cells

    Full text link
    Cell migration and mechanics are tightly regulated by the integrated activities of the various cytoskeletal networks. In cancer cells, cytoskeletal modulations have been implicated in the loss of tissue integrity, and acquisition of an invasive phenotype. In epithelial cancers, for example, increased expression of the cytoskeletal filament protein vimentin correlates with metastatic potential. Nonetheless, the exact mechanism whereby vimentin affects cell motility remains poorly understood. In this study, we measured the effects of vimentin expression on the mechano-elastic and migratory properties of the highly invasive breast carcinoma cell line MDA231. We demonstrate here that vimentin stiffens cells and enhances cell migration in dense cultures, but exerts little or no effect on the migration of sparsely plated cells. These results suggest that cell-cell interactions play a key role in regulating cell migration, and coordinating cell movement in dense cultures. Our findings pave the way towards understanding the relationship between cell migration and mechanics, in a biologically relevant context.Comment: 26+21 pages, 6+11 figures, supplementary movies available at http://doi.org/10.6084/m9.figshare.5480149, submitted to Nano Letters journa

    A feedback regulatory loop between methyltransferase PRMT1 and orphan receptor TR3

    Get PDF
    PRMT1, an arginine methyltransferase, plays an important role in numerous cellular processes. In this study, we demonstrate a feedback regulatory loop between PRMT1 and the orphan receptor TR3. Unlike another orphan receptor HNF4, TR3 is not methylated by PRMT1 although they physically interact with each other. By delaying the TR3 protein degradation, PRMT1 binding leads to the elevation of TR3 cellular protein level, thereby enhances the DNA binding and transactivation activity of TR3 in a non-methyltransferase manner. Another coactivator SRC-2 acts synergistically with PRMT1 to regulate TR3 functions. In turn, TR3 binding to the catalytic domain of PRMT1 causes an inhibition of the PRMT1 methyltransferase activity. This repression results in the functional changes in some of PRMT1 substrates, including STAT3 and Sam68. The negative regulation of PRMT1 by TR3 was further confirmed in both TR3-knockdown cells and TR3-knockout mice with the use of an agonist for TR3. Taken together, our study not only identifies a regulatory role of PRMT1, independent on methyltransferase activity, in TR3 transactivation, but also characterizes a novel function of TR3 in the repression of PRMT1 methyltransferase activity
    • ā€¦
    corecore