54 research outputs found

    Health-related quality of life in KEYNOTE-010 : a phase II/III study of pembrolizumab versus docetaxel in patients with previously treated advanced, programmed death ligand 1-expressing NSCLC

    No full text
    Introduction: In the phase II/III KEYNOTE-010 study (ClinicalTrials.gov, NCT01905657), pembrolizumab significantly prolonged overall survival over docetaxel in patients with previously treated, programmed death ligand 1-expressing (tumor proportion score >= 1%), advanced NSCLC. Health-related quality of life (HRQoL) results are reported here. Methods: Patients were randomized 1:1:1 to pembrolizumab 2 or 10 mg/kg every 3 weeks or docetaxel 75 mg/m(2) every 3 weeks. HRQoL was assessed using European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLC) Core 30 (C30), EORTC QLQ-Lung Cancer 13 (LC13), and EuroQoL-5D. Key analyses included mean baseline-to-week-12 change in global health status (GHS)/quality of life (QoL) score, functioning and symptom domains, and time to deterioration in a QLQ-LC13 composite endpoint of cough, dyspnea, and chest pain. Results: Patient reported outcomes compliance was high across all three instruments. Pembrolizumab was associated with better QLQ-C30 GHS/QoL scores from baseline to 12 weeks than docetaxel, regardless of pembrolizumab dose or tumor proportion score status (not significant). Compared with docetaxel, fewer pembrolizumab-treated patients had "deteriorated" status and more had "improved" status in GHS/QoL. Nominally significant improvement was reported in many EORTC symptom domains with pembrolizumab, and nominally significant worsening was reported with docetaxel. Significant prolongation in true time to deterioration for the QLQ-LC13 composite endpoint emerged for pembrolizumab 10 mg/kg compared to docetaxel (nominal two-sided p = 0.03), but not for the 2-mg/kg dose. Conclusions: These findings suggest that HRQoL and symptoms are maintained or improved to a greater degree with pembrolizumab than with docetaxel in this NSCLC patient population. (C) 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

    Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction

    No full text
    Abstract Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits

    Experimental design and quantitative analysis of microbial community multiomics

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore