35 research outputs found

    Expert judgement for dependence in probabilistic modelling : a systematic literature review and future research directions

    Get PDF
    Many applications in decision making under uncertainty and probabilistic risk assessment require the assessment of mul- tiple, dependent uncertain quantities, so that in addition to marginal distributions, interdependence needs to be modelled in order to properly understand the overall risk. Nevertheless, relevant historical data on dependence information are often not available or simply too costly to obtain. In this case, the only sensible option is to elicit this uncertainty through the use of expert judgements. In expert judgement studies, a structured approach to eliciting variables of interest is desirable so that their assessment is methodologically robust. One of the key decisions during the elicitation process is the form in which the uncertainties are elicited. This choice is subject to various, potentially con icting, desiderata related to e.g. modelling convenience, coherence between elicitation parameters and the model, combining judgements, and the assessment burden for the experts. While extensive and systematic guidance to address these considerations exists for single variable uncertainty elicitation, for higher dimensions very little such guidance is available. Therefore this paper o ers a systematic review of the current literature on eliciting dependence. The literature on the elicitation of dependence parameters such as correlations is presented alongside commonly used dependence models and experience from case studies. From this, guidance about the strategy for dependence assessment is given and gaps in the existing research are identi ed to determine future directions for structured methods to elicit dependence

    Bayesian Network Modeling and Expert Elicitation for Probabilistic Eruption Forecasting: Pilot Study for Whakaari/White Island, New Zealand

    Get PDF
    Bayesian Networks (BNs) are probabilistic graphical models that provide a robust and flexible framework for understanding complex systems. Limited case studies have demonstrated the potential of BNs in modeling multiple data streams for eruption forecasting and volcanic hazard assessment. Nevertheless, BNs are not widely employed in volcano observatories. Motivated by their need to determine eruption-related fieldwork risks, we have worked closely with the New Zealand volcano monitoring team to appraise BNs for eruption forecasting with the purpose, at this stage, of assessing the utility of the concept rather than develop a full operational framework. We adapted a previously published BN for a pilot study to forecast volcanic eruption on Whakaari/White Island. Developing the model structure provided a useful framework for the members of the volcano monitoring team to share their knowledge and interpretation of the volcanic system. We aimed to capture the conceptual understanding of the volcanic processes and represent all observables that are regularly monitored. The pilot model has a total of 30 variables, four of them describing the volcanic processes that can lead to three different types of eruptions: phreatic, magmatic explosive and magmatic effusive. The remaining 23 variables are grouped into observations related to seismicity, fluid geochemistry and surface manifestations. To estimate the model parameters, we held a workshop with 11 experts, including two from outside the monitoring team. To reduce the number of conditional probabilities that the experts needed to estimate, each variable is described by only two states. However, experts were concerned about this limitation, in particular for continuous data. Therefore, they were reluctant to define thresholds to distinguish between states. We conclude that volcano monitoring requires BN modeling techniques that can accommodate continuous variables. More work is required to link unobservable (latent) processes with observables and with eruptive patterns, and to model dynamic processes. A provisional application of the pilot model revealed several key insights. Refining the BN modeling techniques will help advance understanding of volcanoes and improve capabilities for forecasting volcanic eruptions. We consider that BNs will become essential for handling ever-burgeoning observations, and for assessing data's evidential meaning for operational eruption forecasting

    Predicting reliability through structured expert elicitation with the repliCATS (Collaborative Assessments for Trustworthy Science) process

    Get PDF
    As replications of individual studies are resource intensive, techniques for predicting the replicability are required. We introduce the repliCATS (Collaborative Assessments for Trustworthy Science) process, a new method for eliciting expert predictions about the replicability of research. This process is a structured expert elicitation approach based on a modified Delphi technique applied to the evaluation of research claims in social and behavioural sciences. The utility of processes to predict replicability is their capacity to test scientific claims without the costs of full replication. Experimental data supports the validity of this process, with a validation study producing a classification accuracy of 84% and an Area Under the Curve of 0.94, meeting or exceeding the accuracy of other techniques used to predict replicability. The repliCATS process provides other benefits. It is highly scalable, able to be deployed for both rapid assessment of small numbers of claims, and assessment of high volumes of claims over an extended period through an online elicitation platform, having been used to assess 3000 research claims over an 18 month period. It is available to be implemented in a range of ways and we describe one such implementation. An important advantage of the repliCATS process is that it collects qualitative data that has the potential to provide insight in understanding the limits of generalizability of scientific claims. The primary limitation of the repliCATS process is its reliance on human-derived predictions with consequent costs in terms of participant fatigue although careful design can minimise these costs. The repliCATS process has potential applications in alternative peer review and in the allocation of effort for replication studies

    Are Experts Well-Calibrated? An Equivalence-Based Hypothesis Test

    No full text
    Estimates based on expert judgements of quantities of interest are commonly used to supplement or replace measurements when the latter are too expensive or impossible to obtain. Such estimates are commonly accompanied by information about the uncertainty of the estimate, such as a credible interval. To be considered well-calibrated, an expert’s credible intervals should cover the true (but unknown) values a certain percentage of time, equal to the percentage specified by the expert. To assess expert calibration, so-called calibration questions may be asked in an expert elicitation exercise; these are questions with known answers used to assess and compare experts’ performance. An approach that is commonly applied to assess experts’ performance by using these questions is to directly compare the stated percentage cover with the actual coverage. We show that this approach has statistical drawbacks when considered in a rigorous hypothesis testing framework. We generalize the test to an equivalence testing framework and discuss the properties of this new proposal. We show that comparisons made on even a modest number of calibration questions have poor power, which suggests that the formal testing of the calibration of experts in an experimental setting may be prohibitively expensive. We contextualise the theoretical findings with a couple of applications and discuss the implications of our findings

    Uncertainty Quantification with Experts: Present Status and Research Needs

    No full text
    Expert elicitation is deployed when data are absent or uninformative and critical decisions must be made. In designing an expert elicitation, most practitioners seek to achieve best practice while balancing practical constraints. The choices made influence the required time and effort investment, the quality of the elicited data, experts’ engagement, the defensibility of results, and the acceptability of resulting decisions. This piece outlines some of the common choices practitioners encounter when designing and conducting an elicitation. We discuss the evidence supporting these decisions and identify research gaps. This will hopefully allow practitioners to better navigate the literature, and will inspire the expert judgment research community to conduct well powered, replicable experiments that properly address the research gaps identified.</p

    An In-Depth Perspective on the Classical Model

    No full text
    The Classical Model (CM) or Cooke’s method for performing Structured Expert Judgement (SEJ) is the best-known method that promotes expert performance evaluation when aggregating experts’ assessments of uncertain quantities. Assessing experts’ performance in quantifying uncertainty involves two scores in CM, the calibration score (or statistical accuracy) and the information score. The two scores combine into overall scores, which, in turn, yield weights for a performance-based aggregation of experts’ opinions. The method is fairly demanding, and therefore carrying out a SEJ elicitation with CM requires careful consideration. This chapter aims to address the methodological and practical aspects of CM into a comprehensive overview of the CM elicitation process. It complements the chapter “Elicitation in the Classical Model” in the book Elicitation (Quigley et al. 2018). Nonetheless, we regard this chapter as a stand-alone material, hence some concepts and definitions will be repeated, for the sake of completeness.Applied Probabilit

    An In-Depth Perspective on the Classical Model

    No full text
    The Classical Model (CM) or Cooke’s method for performing Structured Expert Judgement (SEJ) is the best-known method that promotes expert performance evaluation when aggregating experts’ assessments of uncertain quantities. Assessing experts’ performance in quantifying uncertainty involves two scores in CM, the calibration score (or statistical accuracy) and the information score. The two scores combine into overall scores, which, in turn, yield weights for a performance-based aggregation of experts’ opinions. The method is fairly demanding, and therefore carrying out a SEJ elicitation with CM requires careful consideration. This chapter aims to address the methodological and practical aspects of CM into a comprehensive overview of the CM elicitation process. It complements the chapter “Elicitation in the Classical Model” in the book Elicitation (Quigley et al. 2018). Nonetheless, we regard this chapter as a stand-alone material, hence some concepts and definitions will be repeated, for the sake of completeness.</p

    Uncertainty Quantification with Experts: Present Status and Research Needs

    No full text
    Expert elicitation is deployed when data are absent or uninformative and critical decisions must be made. In designing an expert elicitation, most practitioners seek to achieve best practice while balancing practical constraints. The choices made influence the required time and effort investment, the quality of the elicited data, experts’ engagement, the defensibility of results, and the acceptability of resulting decisions. This piece outlines some of the common choices practitioners encounter when designing and conducting an elicitation. We discuss the evidence supporting these decisions and identify research gaps. This will hopefully allow practitioners to better navigate the literature, and will inspire the expert judgment research community to conduct well powered, replicable experiments that properly address the research gaps identified.Applied Probabilit

    A Bayesian network approach to coastal storm impact modeling

    No full text
    In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to their accompanying flood characteristics and damages to residential buildings, following on the trend of integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information on land use and a depth-damage curve. The approach can easily be applied to any site. We have chosen the Belgian village Zeebrugge as a case study, although we use a simplified storm climate. The BN can predict spatially varying inundation depths and building damages for specific storm scenarios and diagnose under which storm conditions and where on the site the highest impacts occur.Non UBCUnreviewedThis collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver.FacultyOthe
    corecore