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Bayesian Networks (BNs) are probabilistic graphical models that provide a robust and

flexible framework for understanding complex systems. Limited case studies have

demonstrated the potential of BNs in modeling multiple data streams for eruption

forecasting and volcanic hazard assessment. Nevertheless, BNs are not widely employed

in volcano observatories. Motivated by their need to determine eruption-related fieldwork

risks, we have worked closely with the New Zealand volcanomonitoring team to appraise

BNs for eruption forecasting with the purpose, at this stage, of assessing the utility of

the concept rather than develop a full operational framework. We adapted a previously

published BN for a pilot study to forecast volcanic eruption on Whakaari/White Island.

Developing the model structure provided a useful framework for the members of the

volcano monitoring team to share their knowledge and interpretation of the volcanic

system. We aimed to capture the conceptual understanding of the volcanic processes

and represent all observables that are regularly monitored. The pilot model has a

total of 30 variables, four of them describing the volcanic processes that can lead to

three different types of eruptions: phreatic, magmatic explosive and magmatic effusive.

The remaining 23 variables are grouped into observations related to seismicity, fluid

geochemistry and surface manifestations. To estimate the model parameters, we held a

workshop with 11 experts, including two from outside the monitoring team. To reduce

the number of conditional probabilities that the experts needed to estimate, each variable

is described by only two states. However, experts were concerned about this limitation,

in particular for continuous data. Therefore, they were reluctant to define thresholds to

distinguish between states. We conclude that volcano monitoring requires BN modeling

techniques that can accommodate continuous variables. More work is required to link

unobservable (latent) processes with observables and with eruptive patterns, and to

model dynamic processes. A provisional application of the pilot model revealed several
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key insights. Refining the BN modeling techniques will help advance understanding of

volcanoes and improve capabilities for forecasting volcanic eruptions. We consider that

BNs will become essential for handling ever-burgeoning observations, and for assessing

data’s evidential meaning for operational eruption forecasting.

Keywords: Bayesian networks, structured expert judgment, volcanomonitoring, eruption forecasting,White Island

INTRODUCTION

Volcanoes are complex systems capable of producing hazardous
phenomena that can kill or injure people and destroy assets,
sometimes with little warning. Interpreting a volcano’s state
and forecasting the likelihood, extent and intensity of its
future activity is extremely challenging. Around the world,
volcano observatories are responsible for monitoring volcanoes
and interpreting data, often with the added responsibility of
providing scientific information to authorities to assist with
public safety and civil protection decisions. Typically, multiple
scientific sub-disciplines (e.g., geology, seismology, geodesy,
geochemistry, remote sensing) contribute to such monitoring
and interpretation efforts.

Quantitative support tools for eruption forecasting and
decision-support are becoming crucially important for volcano
observatories and monitoring groups (Selva et al., 2012; Sparks
et al., 2012). Such tools can provide a reproducible, transparent,
documented framework that reinforces objective operational
forecasting procedures and guidance, and can increase the level
of public trust in volcanologists’ advice (Barclay et al., 2015).
Generally, the focus of such tools is forecasting when and how
(e.g., hazard footprint/severity, eruption duration) an imminent
eruption will occur.

Quantitative tools to support decision-making during a
volcanic crisis are gradually being developed. Event trees are
often used to outline possible sequences of events (Newhall
and Hoblitt, 2002). As a sequence evolves and new information
becomes available, Bayesian methods can be used for updating
model outputs (Marzocchi et al., 2008; Lindsay et al., 2010).
Bayesian networks (BNs) are concerned with modeling the
joint probability distribution of all system variables for their
evidential worth when assessing a volcano’s state. BNs have
been advocated to aid decision-making in volcanic crises for
over a decade (Aspinall et al., 2003). They have been applied
to retrospectively analyze the 1975–1977 volcanic crisis at La
Soufrière volcano, Guadeloupe (Hincks et al., 2014), the 1993
explosion at Galeras volcano, Colombia (Aspinall et al., 2003)
and in real-time to the 2011–2012 unrest on Santorini, Greece
(Aspinall and Woo, 2014). Sheldrake et al. (2017) developed a
BN to evaluate evidence for the cessation in eruptive activity of
the Soufrière Hills volcano, Montserrat. Cannavò et al. (2017)
introduced BNs to real-time monitoring on Mount Etna, Italy.
The flexible framework that BNs offer has also been found useful
for probabilistic volcanic multi-hazard assessment of tephra
fallout, pyroclastic density currents and rain-triggered lahars
at Somma-Vesuvius, Italy (Tierz et al., 2017). Despite these
successful case studies, BNs are not widely employed in volcano

observatories for forecasting eruptions or as decision-support
tools to keep local authorities informed of impending volcanic
hazards.

Here, we explore the utility of BN modeling for volcanic
eruption forecasting in New Zealand. For this purpose, we
developed a pilot project for forecasting the probability of
an eruption at Whakaari/White Island volcano, New Zealand.
To set up the pilot study, we used a protocol developed
for risk assessment studies and described in detail in the
Supplementary Material. Here, we provide an overview of
BN modeling within the context of forecasting volcanic
eruptions. We give an overview of volcano monitoring in
New Zealand and describe the volcano chosen for the
pilot study: Whakaari/White Island. The description of the
pilot model is followed by some provisional applications.
Although the pilot study did not produce an applicable
tool for immediate use, we gained numerous and valuable
insights for designing future BN models. We discuss our
findings and insights and make recommendations for further
work.

BAYESIAN NETWORK MODELING

Bayesian networks (BNs) provide a graphical probabilistic
framework for modeling complex real-world systems (Koller
and Friedman, 2009). They have their origin in the artificial
intelligence community (Pearl, 1988), where they were developed
to model the top-down (semantic) and bottom-up (perceptual)
combination of evidence in reading (Pearl and Russel, 2001),
replacing ad hoc rule-based schemes.

A BN is a directed acyclic graph, providing a model structure
which represents a set of random variables as nodes (e.g.,
“Eruption” in Figure 1) and the relationships between them as
arrows (often called arcs or edges, from graph theory). Arcs
point from a “parent” node to a “child” node. A marginal
distribution is specified for values relating to each node with
no parents, and a conditional distribution is required for values
associated with each child node. The absence of an arc between
two nodes represents independent or conditionally independent
random variables (Korb and Nicholson, 2010). However, if
two (unconnected) independent parents share the same child,
then the parents can become conditionally dependent when
information about the child becomes available (in other words
the child is observed). Hence, the (conditional) independence
or dependence of two variables represented as nodes in a BN
is determined by both the model structure, and the observed
or unobserved state of the involved variables. For detailed
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explanations, theoretical considerations and examples we refer
the reader to Pearl (1988), Spirtes et al. (1993), and Murphy
(2012).

A BN model structure, and quantitative information
about the variables, can be retrieved either from data,
when available, or from experts, or a combination of
both. BNs are applied in many different domains (e.g.,
Pourret et al., 2008; Weber et al., 2012), including risk
assessment decision support (e.g., Aspinall et al., 2003;
Fenton and Neil, 2013; Gerstenberger and Christophersen,
2016).

When implemented as a software program, a BN allows easy
but rigorous quantification of the strengths of relationships
between different variables. Moreover, the implementation
of Bayes’ rule (Bayes and Price, 1763), within the program,
allows probabilities to be updated in the light of new evidence.
Thus, a BN can be used to evaluate formally a variety of
different “what if ” scenarios in the face of substantial scientific
uncertainties: it is this capability that makes the BN framework
an invaluable decision resource for supporting volcano
forecasting.

Developing the Model Structure
Developing the model structure involves defining the variables
and identifying possible parent-child relationships. Figure 1

illustrates different simplified modeling options for a volcanic
eruption. For examples Figures 1A,B have only two nodes,
“Eruption” and “Observable” (e.g., seismicity), while the
other examples split the observables into “Geochemistry,”
“Seismicity” and “Deformation.” In these examples, there
are correlations between some of the nodes, but this does
not imply causation—the observable does not cause the
eruption, nor does the actual eruption event itself cause
the precursory unrest. There are, however, internal processes
that lead to eruption, which also cause observable precursory
phenomena.

With these elemental examples in Figures 1A–D, the arcs
can point either direction; in reality, however, there will be
internal processes, such as ascending magma or a magmatic
perturbation of the hydrothermal system, that involve underlying
latent causal links between precursory observables and eruption.
For example Figure 1E is a simplification of the model by Hincks
et al. (2014) developed to retrospectively analyze the 1975–1977
volcanic crisis at La Soufrière volcano, Guadeloupe. Here, the
node “Magmatic process” is the parent node of the eruption
and of the observable nodes and thus the model represents
cause-and-effect relationships. Generally, the structure depends
on data availability and the quantification requirements as further
discussed in the next section.

Quantifying the Model
The information required to quantify a BNmodel depends on the
type of variable represented by each node. Commonly variables
have a finite number of states that are mutually exclusive, and
discrete values exhaustively describe these possible node states.
For such variables, the dependencies are captured in Conditional

Probability Tables (CPTs), as illustrated with our simple examples
(Figure 2 and further explained below).

However, when variables are best characterized by continuous
values, the most common approach (apart from asserting some
form of discretization) is the assumption of a parametric
joint distribution, most often the joint normal distribution. To
quantify such models one needs conditional means and variances
for the nodes, and regression coefficients for the arcs (Pearl, 1988;
Shachter and Kenley, 1989). Unfortunately, often the assumption
of joint normality is not validated in practice. Other modeling
techniques for continuous variables exist (Hanea et al., 2006;
Langseth et al., 2009). In volcanology, the type of probability
distribution for a given variable is often unknown, due to data
scarcity, and several distributionsmay seem plausible (Tierz et al.,
2016a,b). Alternative distributions could be tested within a BN
framework.

For a discrete BN, as in Figure 1A, we need to assess the
marginal probability distribution of the variable “Observable.”
For the variable “Eruption,” we need to know the probability
of “Eruption,” given the state of “Observable.” In the simplest
case, each node has two states, “yes” or “no.” Even though there
are only two possible outcomes for “Eruption,” the model is still
probabilistic, since it calculates the probability of either “yes”
or “no.” To quantify the prior table for the “Observable” node
(O), it is sufficient to assess one probability value, P(O = yes) or
P(O= no), because given the mutually-exclusive-and-exhaustive
requirement: P(O = yes) = 1 − P (O = no), and vice versa.
For the same reason, to quantify the CPT of the “Eruption”
node (E), given the “Observable” node (O), we only need to
assess two probability values, because: P(E = yes|O = yes) =
1 – P(E = no|O = yes) and P(E = yes|O = no) = 1 – P(E
= no|O = no). By the law of total probability, the probability
of “Eruption” can then be calculated, using simple probability
rules, to be P(E = y) = P(E = y|O = y)∗P(O = y)+ P(E = y|O
= n)∗P(O = n). Eruption could have several states E1, E2, E3,
and E4 distinguishing different eruption styles (e.g., Hincks et al.,
2014). In that case, the probabilities to be assessed are P(E1|O
= y), P(E2|O = y), P(E3|O = y) and P(E4|O = y), where again
one probability can be calculated using the other three because
the sum of all four must be one, since the states are mutually
exclusive and exhaustive. Additionally, the probabilities P(E1|O
= n), P(E2|O = n), P(E3|O = n) and P(E4|O = n) must be
assessed.

In case Figure 1B, we need to assess the probability
distribution of the variable “Eruption,” i.e., for the two states E
= y and E = n, we need the probabilities P(E = y) and P(E = n),
which must add up to one. For the node “Observable,” we need
the conditional probability depending on the states of “Eruption.”
So, in the above example, the questions to answer are “what is
the probability of observing unrest seismicity given an eruption
subsequently occurs?” and “what is the probability of observing
unrest seismicity given no eruption occurs?”

The required number of probabilities for a node increases
with the number of parent nodes and the number of states
of both parent and child node. While there is little difference
in assessing the probabilities for cases (Figures 1A,B), this
changes when comparing the probability estimates required
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FIGURE 1 | Simplified examples of model structure to forecast volcanic eruption; parts (A–D) model the relation of observables and eruption; for (A,B), there are only

two nodes, “Eruption” and “Observable,” which are dependent; for (C,D) the observable node is split into “Geochemistry,” “Seismicity” and “Deformation”; in (C) the

observables are independent and in (D) they are dependent on eruption and independent of each other, given eruption. Panel (E) is an example of a causal BN, where

“Magmatic process” is the parent node for “Eruption” and the observables. “Eruption” and the observables are conditionally independent given “Magmatic process.”

The model is a simplification of the La Soufrière model (Hincks et al., 2014) that we adapted to our pilot study.

for cases (Figures 1C,D), which both have three observables
“Geochemistry,” “Seismicity” and “Deformation.” In case
Figure 1C we need to assess the marginal distribution of each of
the observable nodes, similar to case a). Additionally, we need to
assess the probability of eruption given all possible combinations
of its parents’ states. If each of three parent nodes has two states,
the number of combinations is 23 = 8. Quantification quickly
becomes intractable as the number of nodes increases and nodes
have more than two states. Some parent state combinations may
happen extremely rarely, engendering large uncertainties. In
contrast, the complexity of the probability assessment in case
(Figure 1D) compared to case (Figure 1B) has not changed.

The construction and the quantification of BNs are
interrelated, and the chosen structure may change depending
on the quantification requirements, data availability, and/or the
understanding and representation of the problem. Different
modeling choices come with advantages and disadvantages.
Using joint normal distributions that preserve the properties of
continuous value variables precludes representation of marginal
distributions with heavy tails, or tail dependence, as part of the

dependence structure. Complex dependence structures may be
better represented using large CPTs by discretizing continuous
variables into a large number of states. However, this comes with
the price of a huge quantification burden, which, in the absence
of massive data sets, renders poorly quantified conditional
distributions. A mentioned above, data may be unavailable to
fully or even partially quantify a chosen BN. When data are
absent or incomplete, expert elicitation can contribute to BN
quantification.

Structured Expert Judgment
Structured expert judgment (SEJ) is the process of eliciting expert
knowledge as a form of scientific data (Colson and Cooke, 2017).
A variety of expert elicitation protocols have been developed over
recent decades, and successfully deployed in numerous domains
(O’Hagan et al., 2006; Cooke and Goossens, 2008; Aspinall, 2010;
Selva et al., 2012; Hanea et al., 2016). Most follow thoroughly
documented methodological rules, but they differ in several
aspects, including the way interaction between experts is handled,
and the way an aggregated opinion is obtained from individual
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FIGURE 2 | An illustration of the BN calculations for Figure 1D. We assume a monitoring period of 1 month. The probability of Eruption in any 1 month is 5%. The

CPTs for all observables are assumed to be the same in this simple example and the probability of each observable is assumed to be 50% if an Eruption occurs and

10% otherwise. The calculation of the probability for the observables is given for Seismicity in (A). In (B), Seismicity is observed, and the probability of Eruption is

updated according to Bayes’ rule. Given a new probability for Eruption due to an affirmative observation of Seismicity, probabilities for Geochemistry and Deformation

are also updated because they are conditionally dependent on Eruption state probability (the revised Bayes’ calculation is given for the Geochemistry node). Panel (C)

shows the correlation matrix of the variables from 100,000 simulated cases.

experts. There is no single, best SEJ protocol: each has strengths
and weaknesses.

There are two main ways in which experts’ judgments
are aggregated: behaviorally, involving striving for consensus
via discussion and deliberation (e.g., O’Hagan et al., 2006),
and mathematically, involving independent individual expert
estimates being combined with a given mathematical rule (e.g.,
Cooke, 1991). Mathematical rules provide a more explicit,
auditable and objective approach. A weighted linear combination
of opinions is one example of such a rule. Equal weighting is
often used,mostly because of its simplicity.While evidence shows
that equal weighting frequently performs well relative to more
sophisticated aggregation methods for reliably estimating central
tendencies (e.g., Clemen and Winkler, 1999), when uncertainty
quantification is sought, performance-based weighting provides
superior information (Colson and Cooke, 2017).

One accepted differential weighting scheme is the Classical
Model for SEJ (Cooke, 1991). Perhaps its most distinguishing

feature is the use of calibration variables to derive performance-
based weights, providing an empirical basis for validating experts’
judgments. Calibration (or “seed”) variables are taken from the
problem domain for which, ideally, true values become known
post-hoc (Aspinall, 2010). However, this is rarely feasible in
practice and so calibration questions with known realizations
(values) are used instead. Experts are not expected to know these
values precisely, but they are expected to be able to capture them
within informative ranges, defined by ascribing suitable values to
marker quantiles (e.g., 5, 50, and 95th percentiles). The Classical
Model has been the SEJ method most frequently applied for
volcanic hazard and risk assessment worldwide, for many years
(Aspinall, 2006; Martí et al., 2008; Neri et al., 2008; Wadge and
Aspinall, 2014; Bebbington et al., 2018). As a consequence, many
volcanologists are familiar with the approach and associated
procedures.

Nevertheless, it is challenging to find calibration questions
that closely match the types of questions needed to elicit
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conditional probabilities for a BN, especially if there are no
analogs from real-life observations. For our pilot study, we did
not have the resources to develop appropriate seed questions. We
used SEJ with average weighting of experts, and introduced the
concept of calibration to the participating experts for possible
future applications.

Benefits of BN Modeling Within and
Beyond the Pilot Study
Behind the intuitive visualization of a complex relational
problem, which allows collaborative drafting and quantification
of models, the most palpable advantage of a BN is its rigorous
probabilistic foundation. BNs offer a flexible platform and can
easily combine expert input, incomplete data sets, and other
disparate sources of information. For example, different expert
panels can contribute sub-models, which can then be combined
to represent a complex system. If partial data sets are available,
the sub-models’ parameters can be fitted from data. When
suitable data sets are available, entire sub-models (the structure
and parameters) can be learned from data, using machine-
learning techniques (Murphy, 2012), potentially extending and
complementing expert knowledge.

Once the BN is built and fully quantified, its main use is to
update distributions given new data or additional observations.
This is referred to as instantiation, inference, or (less commonly)
bi-directionality (Gerstenberger et al., 2015). Evidence added to
one node will change the probabilities of all dependent nodes,
regardless of the direction of the arcs. This is illustrated in
Figure 2, which uses the elemental example of Figure 1D. We
assume a monitoring period of 1 month. The probability of
“Eruption” in any 1 month is assumed to be 5% as shown
in Figure 2A. If an Eruption occurred, we assume that any
precursory variable was observed in 50% of the priormonths. The
probability of any of the observations is 10% in a month when no
Eruption occurs the following month as shown in the CPTs in
Figure 2A. If “Seismicity” is observed, Bayes’ rule can be applied
to update the probability of “Eruption.” Given an increased
probability of “Eruption” the probabilities of the dependent
nodes “Geochemistry” and “Deformation” also increase. It may
seem counterintuitive that the observation of “Seismicity” has
any impact on the probabilities of seeing changes in other
observables. However, the BN has implicit connections between
observable nodes via hidden processes relating to “Eruption.”
The CPTs express these dependencies which, in the real world,
are driven by underlying magmatic processes that are not directly
modeled in this variant of a BN model. Figure 2C shows the
correlations between the four variables in the BN model. We
used the BN software Netica (Norsys, 1995-2018) to simulate
100,000 realizations of the joint distribution of the four variables.
We calculated these correlations to illustrate that dependence
through correlations may result from the chosen CPT values
despite the lack of causal relation between these variables.

The bi-directionality of BNs is a large advantage over
event trees: BNs can be used to analyze the dependencies
and can advance the understanding of the system. This
characteristic can also be beneficial in operational applications;

for example, if one loses seismograph network coverage due
to a telecommunications signal failure, the BN allows one to
infer what the likely seismicity level would be, given other non-
seismic observations. Even more important, the BN allows one to
make use of “negative evidence”: if gas flux suddenly decreases,
is it due to a conduit blockage (dangerous) or to a change in
gas exsolution in the reservoir (likely benign)? The two carry
quite different hazard implications, and both scenarios need to
be accommodated and ascribed relative probabilities. Inference
as to which is the actual cause may be weighed by what other
observables are indicating.

PILOT STUDY OF A DISCRETE BN MODEL
TO FORECAST ERUPTIONS ON
WHAKAARI/WHITE ISLAND

This section provides some background on volcano monitoring
in New Zealand before describing Whakaari/White Island,
the volcano chosen for the pilot study. We briefly outline
the motivation for the pilot study before describing pilot
model structure, the estimated probabilities and the eruption
probabilities. We briefly discuss other findings from the
workshop and close with a demonstration of typical BN
calculations for two individual experts.

Volcano Monitoring in New Zealand
In New Zealand, GNS Science, through the GeoNet project,
conducts national volcanic monitoring (New Zealand Ministry
of Civil Defence Emergency Management, 2015). GeoNet issues
notifications of any change in volcanic alert level status through
Volcanic Alert Bulletins to the Ministry of Civil Defense and
Emergency, other agencies, and the media. Volcanic Alert
Bulletins are also published on GeoNet’s website (GeoNet, 2018).

GeoNet coordinates the volcano monitoring team, which
consists of GNS Science staff based at three sites. The volcano
monitoring team meets regularly to review the status of all 12
monitored New Zealand volcanic centers, and to set Volcano
Alert Levels (Potter et al., 2014) and the Color Codes of
the International Civil Aviation Organization. Team members
prepare Volcanic Alert Bulletins when required. The team
is responsible for providing scientific advice to emergency
management authorities at the national, regional, and local
level (New Zealand Ministry of Civil Defence Emergency
Management, 2015). In addition to these legislative requirements,
the volcano monitoring team regularly estimates the probability
of forthcoming eruptions for internal health and safety policy
requirements (Jolly et al., 2014; Deligne et al., 2018).

GeoNet data is available free of charge. While GeoNet is
committed to transparent data discoverability, the process of
operationalizing data discovery for non-continuous data (e.g.,
monthly gas flights, gas isotope sampling results) was in its early
stages at the time of our pilot study, and therefore not readily
available for the model development. Thus, the parameters of the
BN model were estimated by expert elicitation rather than from
data.
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Whakaari/White Island Volcano
Whakaari/White Island volcano is of one New Zealand’s most
active volcanoes and it is a major tourist attraction. Located
about 50 km off the coast of the North Island (Figure 3), it is
the northernmost subaerial active volcano of the Taupo Volcanic
Zone (Cole and Lewis, 1981). Its emerged area of 3.3 km2 is
the summit of the much larger White Island Massif (Cole and
Nairn, 1975). The volcano is andesitic to dacitic in composition
and is formed of two overlapping cones with a succession of
lava flows, breccias, agglomerates, and unconsolidated beds of
ash and tuffs containing lava blocks (Black, 1970). Its main
topographical feature (Main Crater) consists of three sub-craters:
western, central and eastern (Houghton and Nairn, 1989, 1991),
with the current active vent in the eastern sub-crater.

Figure 4 illustrates a conceptual model of the volcano. The
magmatic system is perceived to consist of a deep collective
reservoir (4–7 km) that feeds a shallower convective reservoir (1–
2 km) from which small amounts can be injected into an upper
conduit to the surface (Clark and Otway, 1989; Houghton and
Nairn, 1989; Cole et al., 2000; Kilgour et al., 2016). Werner et al.
(2008) proposed that gas and magma are transported from deep
to shallow levels within a closed system (magma convection),
while an open system characterizes the upper conduit. Steaming
ground areas, hot springs, fumaroles, and an acidic crater lake
are the surface expressions of the volcano hydrothermal system
which has existed for at least 10,000 years (Giggenbach and
Glasby, 1977). Several attempts have been made to characterize
the volcano’s hydrothermal system (e.g., Ingham, 1992; Nishi
et al., 1996a). From the location of volcanic earthquakes, Nishi
et al. (1996b) suggested that the active hydrothermal system is
located below Main Crater but its extent and evolution with time
(e.g., presence of a seal) remain poorly understood. The Crater
Lake level had several filling/evaporative cycles that correlate with
varying discharge of the springs (Christenson et al., 2017).

Volcanic activity ranges from fumarolic and hydrothermal
during quiescence, to phreatic, phreatomagmatic, Strombolian
and effusive during more active periods (Cole and Nairn,
1975; Houghton and Nairn, 1989; Nishi et al., 1996b; Chardot
et al., 2015). A major eruptive magmatic episode occurred
between 1976 and 2000 and formed the current active crater
(Figure 3); this episode comprised several cycles, with intra-
episode clusters of activity from 1976 to 1993, 1998, 1999, and
2000. There were at least 250 eruptions during this quarter-
century period, ranging from localized steam and mild ash
eruptions to eruptions with ejecta outside the Main Crater
(G. Jolly, personal communication). These eruptions are not
classified by eruption style, but 45 had ballistic and/or surge
impacts beyond the crater complex (Figure 3B), suggesting
an eruption rate of 0.15 large eruptions/month. Assuming a
Poisson distribution for the number of eruptions in a month,
the probability of one or more eruptions within 1 month
can be calculated from the rate R like 1-exp(-R). Thus, the
probability of one or more eruptions within 1 month impacting
beyond the 1976–2000 crater complex is 14%. However, the
1976–2000 eruptive episode altered the volcanic system and
the prior rate is not necessarily representative of activity
since.

The most recent eruptive episode began with unrest in August
2011 (Chardot et al., 2015), and continued through the end of
2016. During this episode there were eight eruptions (Table 1),
half of which had ballistic and/or surge outside the 1976–2000
crater complex and would have posed safety concerns if they had
coincided with site visits to the island. Calculating an average rate
of eruptions impacting beyond the crater rim for the period from
2001–mid 2018, there were four eruptions within 210 months,
which equals 0.02 per month. The Poisson probability for an
eruption within 1 month impacting beyond the 1976–2000 crater
complex is 2%. There was also one magmatic effusive eruption in
form of a lava dome (Table 1). There were no eruptions in the 2
years leading up to the expert elicitation workshop central to our
pilot study.

Eruptions at Whakaari can be preceded by increased levels of
seismicity (Latter et al., 1989), magnetic changes (Hurst et al.,
2004) and deformation within Main Crater (Clark and Otway,
1989), although eruptions can occur with no useful short-term
precursory activity to indicate that an eruption is imminent. In
the case of the examples cited, changes in monitored parameters
were observed months before the eruption.

Volcano monitoring at Whakaari has been ongoing since
1967 and part of the GeoNet project since its inception in
2001. As of August 2018, monitoring includes continuous
visual observations (three on-island webcams), seismic (two
continuous seismic broadband stations), deformation (two GPS
stations) and SO2 emission measurements (two miniDoas sites)
(Figure 3B), with additional monthly gas flights (CO2, SO2,
and H2S emissions) and regular field campaigns (e.g., leveling,
fumarole and spring sampling, CO2 soil gas surveys, magnetic
surveys).

Whakaari’s seismicity presents a full spectrum of event types,
ranging from long-period to volcano-tectonic events and tremor
(Sherburn et al., 1998). However, the limited number of local
seismometers (and the nearest station off the island being about
50 km away) prevents the accurate and precise location of local
seismic events. Therefore, we can determine the depths of larger
earthquakes that are recorded off island but have little or no
effective depth control on the more frequent small events.

Deformation is mainly assessed using campaign-leveling data,
and the sources of the recent changes are interpreted as being due
to varying pressurization of the main fumarole field (Peltier et al.,
2009; Fournier and Chardot, 2012; Christenson et al., 2017).

Motivation for the Pilot Study
The pilot study was motivated by a GNS Science internal
presentation on life safety when working on volcanoes. At
GNS Science, thresholds of 10−3, 10−4, or 10−5 for the hourly
probability of a fatality at an active volcano trigger different
levels of managerial sign-off for undertaking fieldwork on the
volcano (Jolly et al., 2014; Deligne et al., 2018). As input to the
life-safety risk calculations, members of the volcano monitoring
team regularly estimate the probability of an eruption for New
Zealand volcanoes in a state of unrest. Small probabilities are
challenging to estimate (Burns et al., 2010), and the team has no
shared quantitative tools or models to assist with determining the
eruption probabilities. This is in contrast to the GNS seismology
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FIGURE 3 | (A) Map of Whakaari/White Island’s location in New Zealand and (B) map of Whakaari with position of notable features and GeoNet monitoring equipment.

FIGURE 4 | Conceptual model of Whakaari volcano capturing the variables that are modeled in the BN, including two magma reservoirs, the hydrothermal system

and the crater lake. Note that this is not to scale.

team that has several models to forecast earthquake occurrence
on different time scales (Christophersen et al., 2017); the latter are
being continuously tested and evaluated in international testing
centers (e.g., Gerstenberger and Rhoades, 2010; Rhoades et al.,

2016). Recent positive experience with BN modeling for risk
assessment in carbon capture and storage (Gerstenberger and
Christophersen, 2016) motivated us to explore BNs to address
volcanic eruption probabilities.
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TABLE 1 | The dates and description of the eight eruptions of Whakaari’s most recent eruptive period from 2012 to 2016.

Eruption date Description Volcanic alert bulletins

1 4 August 2012* Ash and blocks on the crater floor WI−2012/02

2 November 2012 Lava dome within crater complex WI−2012/16

3 20 August 2013* Steam and mud eruption, mud and rocks ejected near the source WI−2013/17

4 4 October 2013 Steam venting event WI−2013/21

5 8 October 2014 Minor steam and mud eruption WI−2013/22

6 11 October 2013* Moderate explosive eruption WI−2013/23

7 27 April 2016* Moderate explosive eruption WI−2016/02

8 13 September 2016 Minor steam and ash eruption WI−2016/08

Eruptions dates are according to New Zealand standard time; eruptions 1–6 are also described by Chardot et al. (2015), where the dates are reported in Universal Time Coordinated.

Eruptions 1, 3, 6, and 7 (marked with *) had ballistic and/or surge impacts beyond the 1976–2000 crater complex and thus are of interest for health and safety during field work. The

Volcanic Alert Bulletins can be accessed at www.geonet.org.nz/volcano/vab.

Our goal was not to develop the first operational BNmodel for
eruption forecasting in New Zealand, but to explore the utility
of BN modeling for eruption forecasting in principle, and to
investigate the challenges and potential benefits of the method.
As a consequence, we were experimental in out approach. For
example, we did not attempt to constrain the number of variables
to a manageable number, quite the opposite; for the first model,
we aimed to capture all variables that are regularlymonitored.We
also did not insist on consistent definition of all nodes, as further
explained below.

Pilot Model Structure
The aim of the model is to capture the conceptual understanding
of the volcanic processes that lead to eruptions and to represent
all regularly monitored observables. The pilot BN did not attempt
to model dynamic or transient aspects of the volcanic system,
such as potential drying of the crater lake, which would engender
substantive changes in some variables. The development of the
model structure was iterative and involved defining the variables.
It took a 2-h meeting for a small team with diverse skill sets
to adapt the La Soufrière model to Whakaari and two further
hours to draft the initial set of elicitation questions. Ideally there
would have been two to three 2-h meetings with a small group
of experts from different sub-disciplines to review and fine-tune
sub-networks for the overall model. Having a working BN model
example (Hincks et al., 2014) helped participants who were new
to BNmodeling, enabling them to quickly grasp the concepts and
understand what we were trying to achieve.

Through feedback with individual experts, we quickly
ascertained that individuals from different sub-disciplines had
different understandings of the eruption driving processes.
As a consequence, several node definitions were purposefully
left vague to accommodate different thinking about these
processes. A joint discussion with experts from seismology,
fluid geochemistry, geodesy, and general geophysics highlighted
how the BN framework allowed the different understandings
of the volcanic processes to be discussed in an insightful way.
Unfortunately, the pilot study had time constraints that did not
allow full agreement to be reached on all the nodes.

Figure 5 presents an overview of all nodes that were elicited.
The model structure follows Figure 1E, where observables are

conditionally independent of eruption givenmagmatic processes.
For ease of handling, we split the model into four areas during
the model development process and the expert elicitation. The
areas, described in more detail below, are: (1) volcanic processes
leading to eruption, (2) observations related to seismicity,
(3) observations related to surface manifestations, and (4)
fluid-geochemical observations. Table 2 summarizes the nodes
describing the volcanic processes leading to eruption and the
eruption nodes.

Volcanic Processes Leading to Eruption
The model simplifies the volcanic processes that can lead to
eruption into four unobservable nodes (yellow ovals in Figure 5).
Node 1 is “Gas rich magma ascending” and represents fresh gas-
charged magma entering the system from depth. Volatiles are
driving the ascent of the magma into the upper part of the edifice.
Node 2 is “Shallow magma” and represents the presence of a
shallow magma reservoir being fed by the deeper reservoir. “Gas
rich magma ascending” can fill the shallow magma reservoir and
therefore is a parent of “Shallowmagma.” There is consensus that
there has been shallow magma close to the surface at Whakaari
for at least several decades (Houghton and Nairn, 1989; Cole
et al., 2000). Therefore, we treat this node as a constant (state
“yes”). As a consequence changes in its parent or child nodes
have no direct influence on the node itself or on other dependent
nodes. However, since the presence of “Shallow magma” is
a critical component of the conceptual model of Whakaari
(Figure 4), we chose to keep this node within the model. Node
3 is “Magmatic perturbation of the hydrothermal system.” Both
“Gas rich magma ascending” and “Shallow magma” can lead
to “Magmatic perturbation of the hydrothermal system.” Node
4 is “Presence of a hydrothermal system seal,” which has no
parents. This node describes the partial or full sealing of the
hydrothermal system seal that reduces gas emissions and allows
gas to accumulate. Gas accumulation pressurizes the conduit
and can lead to more explosive phreatic or magmatic explosive
eruptions.

The volcanic processes can lead to three types of eruption
(orange ovals in Figure 5): “Phreatic eruption” (node 5),
“Magmatic explosive eruption” (node 6) and “Magmatic effusive
eruption (node 7). Phreatomagmatic eruptions are included in
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FIGURE 5 | The model structure of the BN to forecast volcanic eruption on Whakaari in the next month; see legend for explanation of arrow and node colors.

magmatic explosive eruptions. The La Soufrière model only had
one eruption node with different states for different eruption
types. We struggled to define mutually exclusive and exhaustive
states because different eruption types can occur within the
1-month period of interest. We explored the option of estimating

the probability of the next eruption within the 1-month period
but found it easier to represent different types of eruption by
separate nodes. To be consistent with the regular elicitation of
eruption probabilities, nodes 5 and 6 are defined as one or more
eruptions within the next month “impacting beyond the rim
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TABLE 2 | The description of nodes 1–4 that capture the hidden processes of the volcano and nodes 5–7 that model three types of eruption.

Node number and name Description

N1: Gas rich magma ascending This node represents fresh gas-charged magma entering the system. Volatiles are driving the ascent of

the magma into the upper part of the edifice. We assess the probability that gas-charged magma is

ascending within any one-month period.

N2: Shallow magma There is a general understanding that there has been shallow magma close to the surface at White

Island for a while. Therefore, we treat this node as a constant with only one state “yes.” As a

consequence, this node does not have direct influence on any subsequent nodes in the BN. Since the

presence of “Shallow magma” is a significant component of the conceptual model of White Island, we

keep this node within the BN model, even though it has no practical function in the BN.

N3: Magmatic perturbation of the hydrothermal system Both “Gas rich magma ascending” and “Shallow magma” can lead to “Magmatic perturbation of the

hydrothermal system,” which again can lead to a “Phreatic eruption” (Node 5).

N4: Presence of a hydrothermal system seal This node describes the partial or full sealing of the magma conduit that reduces gas emissions and

allows gas to accumulate. Gas accumulation pressurizes the conduit and can lead to more explosive

phreatic eruptions. We assess the probability for a seal to be present within any one-month period.

N5: Phreatic eruption This node asks the question “What is the probability of a phreatic eruption within the next month that

would impact beyond the rim of the 1976–2000 crater complex?” It is dependent on “Presence of a

hydrothermal system seal” and “Magmatic perturbation of the hydrothermal system.”

N6: Magmatic explosive eruption This node asks the question “What is the probability of a magmatic eruption within the next month that

would impact beyond the rim of the 1976–2000 crater complex?” The node depends on “Gas rich

magma ascending,” “Shallow magma,” and “Presence of a hydrothermal system seal.”

N7: Magmatic effusive eruption This node asks the question “Is there a dome development or lava at the surface?” The node depends

on “Gas rich magma ascending” and “Shallow magma.”

These descriptions were given to the experts as workshop notes that are included for all nodes in the Supplementary Material. The definitions are purposefully vague to allow for

different understandings of the fundamentals of the volcanic system.

of the 1976–2000 crater complex” (see Figure 3). A magmatic
effusive eruption (node 7) includes dome development and any
lava at the surface. It is likely to happen within the crater,
which is at a lower elevation than the area the monitoring
team would access. Historically, lava domes at Whakaari are
small in comparison to other volcanoes and are therefore not an
immediate threat to health and safety during fieldwork. Figure 5
shows how the eruption nodes are connected to the driving
processes.

Observations Related to Seismicity
Observations related to seismicity include three types of
earthquake occurrence distinguished by their frequency content,
and tremor. They reflect the variety of events recorded at
Whakaari (Sherburn et al., 1998). The reader is directed to the
review by McNutt (2005) for a comprehensive description of
each earthquake type. For each of these observables there is an
additional node that captures recent occurrence of the respective
observables and reflects that the system may have a memory.
Thus, recent activity can indicate that fluids or magma have
shifted in the system. Here, we only discuss the main process(es)
driving each type.

High frequency earthquakes (node 8 for high rate and node
9 for recent high rate) are associated with shear fracture and
thus an indication of stress changes. Low frequency and hybrid
earthquakes (node 10 for high rate and node 11 for recent
high rate) are thought to be associated with fluid processes.
Very long period earthquakes are associated with significant
fluid movement in the subsurface (node 12 for high rate
and node 13 for recent high rate). A further node “Extended
duration of earthquake swarm” (node 14) assesses the duration

of earthquake activity. We do not distinguish the frequency
content of the earthquakes that contribute to the swarm because
it may be difficult to measure the frequency content when
more than one process is causing the earthquake occurrence.
We also consider tremor, which is a persistent seismic signal
of varying durations often associated with volcanic eruptions
(Konstantinou and Schlindwein, 2003 and references therein).
High amplitude of tremor (node 15 for high amplitude and
node 16 for recent high amplitude) can reflect the size of an
eruption, following McNutt (2005), who showed that higher
tremor amplitudes correlate with higher Volcanic Explosivity
Index of eruptions. At Whakaari, periods of increasing tremor
have beenmodeled to retrospectively forecast eruptions (Chardot
et al., 2015).

All of the nodes representing observations related to seismicity
(nodes 8–14) have the same two parents: “Gas rich magma
ascending” and “Magmatic perturbation of the hydrothermal
system.” The tremor nodes (nodes 15 and 16) also depend on
“Shallow magma.”

Observations Related to Surface Manifestations
This part of themodel considers the nodes related to deformation
and to the crater lake and the temperature of fumaroles.
“Anomalous deformation observed by leveling” (node 19) has, as
parent, the “Magmatic perturbation of the hydrothermal system”
and “Large-scale ground inflation as measured by GPS” (node
22) has as parent the node “Gas rich magma ascending.” “High
gas emissions through lake (ebullition)” (node 17) and “Lake
level change independent of precipitation” (node 18) have as
parents the “Magmatic perturbation of the hydrothermal system”
and the “Presence of a hydrothermal system seal.” “Increase
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in fumarole temperature” (node 20) and “Increase in crater
lake temperature” (node 21) have the parents “Gas rich magma
ascending” and “Magmatic perturbation of the hydrothermal
system.”

One node, “Fresh glass” (node 30), was added during the
elicitation workshop and has as parents the “Gas rich magma
ascending” and the “Shallow magma” nodes.

Observations Related to Changes in Fluid

Geochemistry
Elevated gas emissions usually relate to elevated volcanic activity
(e.g., Giggenbach and Sheppard, 1989). Observations related to
changes in fluid geochemistry include “Elevated gas flux of CO2

in air” (node 23), “Elevated gas flux of SO2 in air” (node 24),
“Elevated gas flux of CO2 in fumaroles” (node 25), “Elevated gas
flux of SO2 in fumaroles” (node 26) and “Elevated diffuse (soil)
gas emission” (node 27).

“Changes in the composition of fumaroles consistent with
the presence of magmatic volatiles” (node 28) and “Changes
in the composition of springs and lakes consistent with the
presence of magmatic volatiles” (node 29) are also indications
of “Gas rich magma ascending.” However, the change of the
composition would be fed into the fumaroles through the
hydrothermal system. Only in case of very high temperature
fumaroles (≥800◦C) would the hydrothermal system be
circumvented (Giggenbach and Sheppard, 1989). Therefore,
the experts decided that only “Magmatic perturbation of the
hydrothermal system” is a parent of these two observable nodes
(28 and 29).

Definitions of States
Clearly defining the nodes and states—so that all experts share the
same understanding of the elicitation questions—is an important
part of the BN model development. To reduce the elicitation
burden we described each variable with two states only: “yes”
and “no.” Since the probabilities for all states must add to 100%,
we only asked the question for the “yes” state and calculated
the complementary “no” state probability. During the model
development, experts voiced strong reservations about defining
variables with hard, definite thresholds. They were concerned
that one or more variables might be significantly elevated, such
as seismicity prior to the 2014 deadly Mount Ontake eruption
(Kato et al., 2015), but still not reach the threshold set to trigger a
warning. Near-misses against arbitrary threshold for node states
can also lead to negative (Brier) skill score which appear to
devalue BN forecast performance, as was found for Soufrière
Hills Volcano, Montserrat (Wadge and Aspinall, 2014). Experts
in our study wanted to model the observables as continuous
probability density function. While the modeling techniques we
could access during the pilot model study did not allow for
this, we envisaged continuous BNmodeling as subsequent model
development. As a consequence, we did not define thresholds for
the states of the observable nodes because experts had widely
varying opinions on what levels are appropriate. Attempting to
enforce consensus on issues about which our experts had strong
reservations seemed counter-productive to the aim of the study,

which was to explore the utility of BN modeling for eruption
forecasting in New Zealand.

Instead we asked each expert during the quantification of
the model to describe what threshold they had in mind when
answering the question. For example, for node 8 “High rate of
high frequency earthquakes” we asked, “how do you define “high
rate” of high frequency earthquakes?” There is a wide variation in
the definitions of thresholds, and for node 8 the answers were:
More than 5,10, 20, 30 (two experts), 50, 100 per day, more
than two times the background; one magnitude greater than the
background rate; a couple of earthquakes per hour for at least half
a day, visible with the naked eye on the seismogram. In another
example, for node 20, the answers to “how do you define an
increase in fumarole temperature” were:+ 5◦C,+10–15◦C,+10–
20◦C,+20◦C (three experts),+10% of past value, more than 20%
change from recent trend, 2–3 times the normal temperature. For
node 22, “How do you define elevated gas flux of CO2 in air”
the answers were: More than 250, 500, few hundred, 1,000, 2,000,
2,000, 3,000 tones/day; at least twomeasurements more than 20%
above baseline, increase by over 100% over the background value.
Having different thresholds for the states of the observable nodes
limits the usability of the pilot study. Although theoretically
possible, we did not attempt to group similar answers and
use the matching probability estimates to derive a BN with
consistent state, because the experts had reservations about
using a model with only two states for the observable
nodes.

The Estimated Probabilities
To quantify the model, the experts estimated 120 probabilities
and their 80% confidence intervals, which are summarized in
Christophersen (2017). Figure 6 presents a few questions to show
the spread in answers between experts. Broadly, the elicitation
questions can be split into four categories depending on the
overlap of the experts’ uncertainty intervals. Figure 6a shows an
example of good agreement, where all experts’ ranges overlap.
Figure 6b is an example in which the uncertainty range of one
or two experts fell outside the rest of the answers. In Figure 6c

the experts’ answers fell into two groups with some overlap
of the uncertainty range, which indicates large uncertainty in
the answer. Finally, Figure 6d is an example of even larger
uncertainty, because the variety of answers covers the entire
possible range (from 0 to 100%) and individual ranges tend to
be wider. Experts are in good agreement for only 22 out of 120
questions.

For about one third of the questions (43 out of 120), there
are one or two experts who answered significantly differently to
the others. This may be because they understood the questions
differently, or they had different definitions of states in mind.
Alternatively, they might have a different understanding of the
system or its processes. With more time and resources, it would
have been beneficial to explore these outliers as they could help
improve model definitions. For about half the questions, there
were either two dichotomous groups of responses (17 out of 120),
or a very large spread of values (38 out of 120). Thus, for about
half the questions there were large uncertainties in the probability
estimates.
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FIGURE 6 | Examples of probability range graphs of the 11 experts and their averaged median values (vertical red line) for four nodes, which show: (A) a node with

good agreement of experts’ judgments; (B) two apparent outlier credible intervals; (C) two groupings of experts’ judgments, and (D) large uncertainties in experts’

credible intervals. For each graph the experts’ ranges are ordered in terms of decreasing median size and thus the numbering on the y-axis does not refer to the same

expert in the different examples.

The Eruption Probabilities
The eruption probabilities are a main result from the pilot
modeling and are shown in Figures 7, 8. The nodes that are
relevant for calculating the eruption probabilities are the four
unobservable nodes (yellow ovals in Figure 5) and the three
eruption nodes (orange ovals in Figure 5). These nodes had
the same definition of states for all experts and therefore
we present the results for each individual expert as well
as combined results. Combining experts’ judgments becomes
problematic only if we wish to condition on any of the
observables of the BN (nodes 8–30); this is because then
different thresholds, chosen by the experts, would come into
play.

Figures 7, 8 include the best estimates (circle) for each
expert and three composites. Composite 1 was calculated by
applying equal weights to the experts’ probability estimates
for each question. Composites 2 and 3 consider the experts’
self-weighting. Experts assessed on a scale from 1 (not very
confident) to 10 (very confident) their own expertise in the four
different subject matter areas of the BN (i.e., volcanic processes
leading to eruption; seismicity; surface manifestations; and fluid
geochemistry). For the most confident expert the sum of self-
assessments over all subjects was 1.76 times higher than for
the least confident expert. For Composite 2, we normalized
the experts’ self-assessments for each subject separately so
that the overall contribution varies between the experts, by
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FIGURE 7 | The probabilities of different hazardous eruption styles in the next month: (A) node N5: Phreatic eruption; (B) node N6: Magmatic explosive eruption, and

(C) the joint probability of N5 and N6. Each graph shows the probability for an eruption in the next month sorted by the 50th percentile for the 11 individual experts

and for three composite results. Please see text for an explanation of the three composite results.

a factor of 1.76 at the extreme. For Composite 3, we first
normalized each expert’s assessment across all four subjects,
so that each expert has an equal contribution overall but
with possibly different weightings across subjects depending
on their self-assessments. There is negligible difference in the
probabilities for the three composites. This may be because
we only used a linear scale for weighting. When calibrating
the experts in the Classical Model (Cooke, 1991), the weights
between experts can differ by orders of magnitude. However,
self-weighting is known to correlate poorly with uncertainty
judgment performance (Burgman et al., 2011). In our case, the
experts suggested the self-weighting themselves as an additional
way to express their uncertainty in some areas compared to
others.

The graphs also show 80% confidence intervals calculated
from the 10th and 90th quantiles, obtained as follows. We fitted
beta distributions to each set of lower and upper quantiles for
each expert; we then sampled from each beta distribution 1,000
times, re-quantified the BN for each combination and selected the
10 and 90th quantiles of the results.

The composite probabilities per month are around 19% for
phreatic (Figure 7A), 14% for magmatic explosive (Figure 7B),
and 5% for magmatic effusive (Figure 8). For nodes 5 and 7,
the probabilities of individual experts vary significantly, i.e.,
beyond the estimated 80% confidence interval, while node 6 only
has one outlier. The probability range for phreatic eruption is
from 0.62% (Expert 9’s best estimate) to 60% (Expert 5’s best
estimate), i.e., two orders of magnitude. For magmatic explosive
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FIGURE 8 | The probability of a magmatic effusive eruption (Node 7) within the

next month. The data are sorted by the 50th percentile for the 11 individual

experts. See text for an explanation of the composite results. Note that here

the x-axis only covers probabilities in the range 0–25%.

eruption the individual experts’ probabilities range from 2.5%
(Expert 9) to 65% (Expert 7). Magmatic effusive eruption has the
least variation in individual results ranging from 0.2% (Expert
9) to 12% (Expert 7), albeit still covering more than an order
of magnitude difference. The spread of probabilities reflects

large uncertainty between experts’ judgments, whereas the wide
individual intervals reflect large uncertainty within experts’
assessments when asked about these conditional probabilities
(Figure 6). With more time to clarify some of the questions and
the experts’ responses, both types of spread would likely decrease.

To compare the model eruption probabilities to the long-term
eruption rate of concern to safety when undertaking fieldwork
(section Whakaari/White Island Volcano) we sampled the BN to
calculate the probability of either one or both types of eruptions
(node 5 and nodes 6) occurring in a 1-month period.We used the
gRain package (Højsgaard, 2012) to calculate this probabilities
(Figure 7C) to be around 28%. The results of the individual
experts range from 3% (Expert 9) to 81% (Expert 7).Most experts’
judgments and the composite results are higher than the Poisson
probability of 2%, calculated from the average eruption rate since
2001. Unfortunately, the resources of the pilot study were limited
and there was no chance to have thorough discussions with the
experts about the findings. Therefore, the results need to be
treated with hesitation. Perhaps coincidently, Expert 9 had BN
eruption probabilities similar to those implied by observations
over the past 17.5 years. We selected the results of this expert and
one other to illustrate the power of a BN when evidence in form
of observations can be added (section Updating the BN With
Evidence).

Other Findings From the Workshop
During the workshop we collected feedback from the experts
on their impressions of BN modeling and SEJ, as well as
general feedback on the workshop itself. Most comments were
positive. The main findings were: (1) the majority of experts
were interested to learn more about BNs and possibly to be
able to run their own models; (2) experts identified further
research questions that BNs could help answer such as identifying
what monitoring data was most important and testing different
conceptual ideas, and (3) there were suggestions to apply BNs
to other volcanoes and use it in forecasting routinely, maybe in
combination with Bayesian event trees. At the workshop, we did
not conduct a calibration exercise that would have allowed us to
apply the Classical model, because we did not have the resources
to develop calibration questions that were relevant for the
conditional probabilities. However, we did introduce to concept
of performance weighting and the experts were supportive of the
notion of applying this in future elicitations.

Updating the BN With Evidence
The fully quantified BN can be used to update distributions
given new data or additional observations as already illustrated
in Figure 2. Setting evidence, as it arrives, is a key step for
determining how eruption probability changes when certain
observables occur. Analysis of the way different observations
influence eruption probability can help to better understand
drivers and influences within the volcanic system. Since we
had limited opportunity to review the results with the experts
the following presentations are for illustrating how a BN
works generally, rather than trying to deduce formally volcanic
processes integral toWhakaari. For Table 3, we select two experts
to show the effect of observing either a “high rate of high
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frequency earthquakes” (node 8) or “elevated gas flux CO2 in
air” (node 23) on the probabilities of “yes” for all other nodes.
The selected experts are Expert 9, whose eruption probabilities
were the smallest (and similar to the observed Poisson probability
since 2001), and Expert 11, whose values are generally mid-
range, relative to the group.Table 3 shows the probability of “yes”
for each of the 30 nodes in the BN for both these experts. The first
column for each expert presents the unconditional probability,
i.e., the probability of “yes” in any month for the nodes that
are listed in the rows. The second and third columns for each
expert have results for two selected observables. Taking the values
from each line in the table, one can compare the effect of these
observations on all the other nodes. For example, for Expert 9,
the probability of a “N5: Phreatic eruption” increases from 0.62
to 1.4% when “N8: High rate of high frequency earthquakes” is
observed, and from 9.9 to 25% for Expert 11 under the same
condition.

Table 3 illustrates how adding evidence changes the
probability of all nodes that are directly or indirectly connected,
i.e., in our case nearly all nodes. For example, observing “High
rate of high frequency earthquakes” makes “Elevated gas flux
CO2 in air” more likely (increase from 5.8 to 28% for Expert
9 and 13 to 25% for Expert 11) and observing “Elevated gas
flux CO2 in air” increases the probability for “high rate of high
frequency earthquakes” from 1.6 to 7.6% for Expert 9 and from
15 to 29% for Expert 11. The influence of seeing one observable
on the likelihood that another being positive can be explained by
their indirect linkage via common unobservable volcanic process
nodes (yellow nodes in Figure 5). In this instance, the CPTs of
the observable nodes reflect judgments that these observables
are more likely to occur when gas rich magma ascends (node 1),
or when there is a magmatic perturbation of the hydrothermal
system (node 3). Thus, using the equations outlined in Figure 2,
the probabilities of nodes 1 and 3 both increase when one of
the observables occurs. Higher probabilities for nodes 1 and 3
in turn increase the probabilities of the other observables. This
bi-directionality is useful to explore the diagnostic sensitivity
of the results (the eruption nodes 5–7) to observing individual
nodes, as done in Table 4.

An example of independent nodes is nodes 4 and 8. As a
consequence of their independence, the probability of node 4
does not change when node 8 is instantiated. In contrast, there
is a parent-child relationship between node 4 and node 23. For
Expert 11, the probability of node 4 changes when node 23 is
instantiated. However, this is not the case for Expert 9, who
judged node 4 and node 23 to be independent by providing the
same probabilities for the CPT of node 23 regardless of whether
node 4 was “yes” or “no.”

Looking at the hidden nodes “N1: Gas rich magma ascending”
and “N3: Magmatic perturbation of the hydrothermal system,”
the effect of observing “N8: High rate of high frequency
earthquakes” and “N23: Elevated gas flux CO2 in air” is reversed
for both experts: for Expert 9, the probability for node 1 increases
from 1 to 38% for observing high frequency earthquakes,
compared to only 11% for observing elevated CO2 in air. This
trend is reversed for node 3, where the probability increases from
21 to 46% for observing high frequency earthquakes but to 79%

for elevated CO2 in air. Expert 9’s explanation for this is that
a high rate of high frequency earthquakes is an indication of
rock breaking, which is very likely caused by gas rich magma
ascending. Other processes can also cause elevated CO2 in air
and there may also be a delay in CO2 reaching air when gas
rich magma is ascending. Other nodes that have a notable higher
probability when conditioned on node 8, rather than on node
23 include “N7: Magmatic explosive eruption” and “N30: Fresh
glass.” These outcomes are again consistent with fresh magma
rising abruptly and breaking rocks along the way. Unfortunately,
there was not time to discuss the results with all experts. Doing
so, especially as a group process, can help to share, and perhaps
resolve, differing understandings of the system.

A final example from Table 3 might initially appear
counterintuitive: the probability of elevated gas flux CO2

and SO2 in fumaroles is higher for a high rate of high
frequency earthquakes than for elevated CO2 gas in air.
This is the case for both Experts 9 and 11, but more so
for Expert 9. Expert 9 estimates that node 1 has a much
stronger influence on the gas flux in fumaroles than node 3.
As discussed above, the probability of the former is much
higher (38 vs. 11%) when a high rate of high frequency
earthquakes is observed compared to elevated gas flux CO2 in
air.

Table 4 shows the probability of observing the different
eruption types in the next month for Expert 11, given
evidence for the individual observational nodes listed
in the rows. For example, the largest increase in the
probability of “yes” for “Magmatic explosive eruption”
from an individual node comes from node “N28: Changes
in the composition of fumaroles consistent with presence of
magmatic volatiles” (45% compared to 9.9% for unconditional).
This example illustrates how the BN method allows the
probabilistic weights of different pieces of evidence to be
enumerated, one against another, in a coherent and objective
manner.

At the bottom of Table 4, we show the probability of
the three eruption nodes for all observables happening at
the same time, as well as different combinations of nodes.
When all observables occur, the probabilities for eruption
in the next month are 60% for “N5: Phreatic eruption,”
66% for “N6: Magmatic explosive eruption” and 5% for
“N7: Magmatic effusive eruption.” In the following rows, we
combine different nodes to explore which ones are most
influential to get closest to the maximum probabilities found
when all observables occur. The probabilities of eruption
increase most for a combination of nodes from different
areas of the BN, namely seismological and changes in fluid
geochemistry.

DISCUSSION AND RECOMMENDATIONS

The aim of the pilot project was to explore the utility
of BN modeling for eruption forecasting rather than to
develop an operational model for short-term volcanic hazard
assessment. The pilot provided opportunities for productive
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TABLE 3 | The probability of “yes” for Expert 9 and 11 of observing each node for the unconditional Bayesian network with no evidence added, and evidence added to

“yes” for node “N8: High rate of high frequency earthquakes” and node “N23: Elevated gas flux of CO2 in air.”

Expert 9 Expert 11

Node Unconditional (%) N8 “yes” (%) N23 “yes” (%) Unconditional (%) N8 “yes” (%) N23 “yes” (%)

N1: Gas rich magma ascending 1.0 38 11 3.0 17 21

N2: Shallow magma 100 100 100 100 100 100

N3: Magmatic perturbation of the hydrothermal

system

21 46 78 7.6 36 27

N4: Presence of a hydrothermal system seal 60 60 60 5 5 2.8

N5: Phreatic eruption 0.62 1.4 2.4 9.9 25 20

N6: Magmatic explosive eruption 2.5 20 7.4 6.2 17 17

N7: Magmatic effusive eruption 1.1 4.4 2.0 0.25 0.94 1.1

N8: High rate of high frequency earthquakes 1.6 100 7.6 15 100 29

N9: Recent high rate of high frequency earthquakes 1.5 21 7.1 12 30 27

N10: High rate of low frequency and hybrid

earthquakes

5.2 33 23 11 35 29

N11: Recent high rate of low frequency and hybrid

earthquakes

5.0 25 20 9.2 32 26

N12: High rate of very long period earthquakes 10 41 38 11 35 29

N13: Recent high rate of very long period

earthquakes

7.6 38 31 9.2 32 26

N14: Extended duration of earthquake swarm 13 43 52 25 41 37

N15: High amplitude of tremor 11 29 41 11 33 27

N16: Recent high amplitude of tremor 4.6 12 17 11 33 27

N17: High gas emissions through lake (ebullition) 7.0 15 25 20 40 34

N18: Lake level change independent of precipitation 18 29 41 20 40 34

N19: Anomalous deformation observed by leveling 4.2 4.5 4.8 16 38 31

N20: Increase in fumarole temperature 4.8 33 23 16 38 32

N21: Increase in crater lake temperature 3.8 33 20 16 37 31

N22: Large scale ground inflation on GPS 0.010 0.38 0.11 5.5 7.6 8.1

N23: Elevated gas flux CO2 in air 5.8 28 100 13 25 100

N24: Elevated gas flux SO2 in air 1.9 9.7 3.3 52 60 59

N25: Elevated gas flux CO2 in fumaroles 1.5 28 9.6 13 26 25

N26: Elevated gas flux SO2 in fumaroles 1.5 28 9.6 18 30 28

N27: Elevated diffuse gas emission 1.3 19 8.3 7.3 17 19

N28: Changes in the composition of fumaroles

consistent with presence of magmatic volatiles

19 41 67 16 38 31

N29: Changes in the composition of springs and

lakes consistent with presence of magmatic volatiles

16 34 55 16 38 31

N30: Fresh glass 0.75 26 7.9 12 20 22.6

multi-disciplinary and international collaborations, and led to
many useful insights that, most likely, would not have emerged
without having a structured elicitation framework (detailed in the
Supplementary Material).

The volcano monitoring team, as key stakeholder for
assessing the usefulness of BNmodeling for eruption forecasting,
was involved in all stages of the pilot project. The team
members participated enthusiastically and experts from New
Zealand universities readily agreed to participate in the
workshop to quantify the model. The strong engagement
of volcanologists from within and outside the volcano
monitoring team reflects the interest in probabilistic methods
for eruption forecasting. The participants saw other possible

applications of BNs in their own work, ranging from better
understanding the volcano system to deciding what monitoring
data were critical and where to put additional monitoring
stations.

The development of the BN model structure provided a
useful framework for experts from different sub-disciplines to
share and synthesize their respective understandings of the
volcano system. The graphical representation with simplified
causal links proved to be an illuminating “prop” as different
experts explained their interpretations of the various elements
of the system. Thus, the BN concept enhanced scientific
discussion between experts, who already regularly discuss
Whakaari.

Frontiers in Earth Science | www.frontiersin.org 17 November 2018 | Volume 6 | Article 211

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Christophersen et al. Bayesian Networks in Volcano Monitoring

TABLE 4 | For Expert 11, the probability of each of the three eruption types occurring in the next month (node = “yes”) given positive evidence is present for all

observational nodes (in the rows), and the same eruption probabilities for different sub-combinations of observational nodes (at the bottom of the table).

Evidence added to nodes, i.e., set to

100

Probability of “yes” for

Phreatic eruption (%) Magmatic explosive eruption (%) Magmatic effusive eruption (%)

Unconditional probability repeated from

Table 2

9.9 6.2 0.25

Observations related to

seismicity

N8: High rate of high frequency

earthquakes

25 17 0.94

N9: Recent high rate of high frequency

earthquakes

27 19 1.0

N10: High rate of low frequency and

hybrid earthquakes

37 24 1.3

N11: Recent high rate of low frequency

and hybrid earthquakes

43 27 1.5

N12: High rate of very long period

earthquakes

37 24 1.3

N13: Recent high rate of very long period

earthquakes

43 27 1.5

N14: Extended duration of earthquake

swarm

19 12 0.58

N15: High amplitude of tremor 37 23 1.2

N16: Recent high amplitude of tremor 37 23 1.2

Observations related to

surface processes

N17: High gas emissions through lake

(ebullition)

23 14 0.68

N18: Lake level change independent of

precipitation

23 14 0.68

N19: Anomalous deformation observed by

leveling

29 17 0.85

N20: Increase in fumarole temperature 28 18 0.91

N21: Increase in crater lake temperature 29 17 0.86

N22: Large scale ground inflation on GPS 14 11 0.64

N30: Fresh Glass 17 15 0.97

Observations related to

changes in fluid

geochemistry

N23: Elevated gas flux CO2 in air 20 17 1.1

N24: Elevated gas flux SO2 in air 12 7.5 0.35

N25: Elevated gas flux CO2 in fumaroles 22 16 0.86

N26: Elevated gas flux SO2 in fumaroles 18 13 0.65

N27: Elevated diffuse gas emission 42 43 3.1

N28: Changes in the composition of

fumaroles consistent with presence of

magmatic volatiles

45 31 1.8

N29: Changes in the composition of

springs and lakes consistent with

presence of magmatic volatiles

45 31 1.8

Combination of

evidence added

All observables on “yes” 60 66 5.0

N8&N23 44 43 3.1

N8&N23 &N22 52 58 4.3

N8&N23 &N20 55 55 3.9

N8&N23 &N20&N22 56 63 4.7

Note that the probabilities now refer to the nodes in the column caption and not in the rows, as in Table 3.

In the following, we highlight issues related to the model
complexity, definitions of variables and states, and BN modeling
in volcanology.

Clarity of Definitions for Nodes and States
Given the time constraints on the pilot study, we did not
have the opportunity to discuss all nodes with all experts prior
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to the elicitation workshop. There was extensive discussion
during the workshop although insufficient to gain clarity on all
aspects. In particular, the node concerning the “Presence of the
hydrothermal system seal” prompted debate among the experts.
While written descriptions of each expert’s understanding of the
node are similar, the spread of probability judgments in questions
involving this node indicates large uncertainty. Many experts
commented that they were unsure how to deal with this node.
This highlights that, while it is important for all experts to have
as much clarity and agreement on all nodes in the BN as possible,
such challenges are often intrinsic to a complex problem. Their
emergence through elicitation and BN building often signal
where critical and unresolved issues may exist. Any “hidden”
nodes that describe the unobservable processes of the volcanic
systems can be expected to be vaguer since experts inevitably have
varying understandings of those processes.

For simplicity, the pilot model was configured with only
two states for each variable. The experts did not agree that
such a simplification was justified due to the continuous nature
of data, which characterize most observables, and the wide
range of values they can cover. Given the challenge to set
thresholds to distinguish between the two states, we did not
enforce consensus. Instead the experts provided their individual
definition of thresholds when estimating the probabilities (see
section Definitions of states). The different definitions of
thresholds contributed to the spread in responses (Figure 6).
Other eruption forecasting models have adopted fuzzy logic to
deal with monitoring variables (e.g., Marzocchi et al., 2008; Selva
et al., 2012). To distinguish a parameter “anomaly” from its
“non-anomaly” state, two separate determinative thresholds are
chosen, and a fuzzy function gauges the “degree of anomaly” in
between. Within this approach, a probability density function
is constructed for the event of interest, e.g., for (magmatic)
unrest or eruption. Whilst, for simplicity, our workshop
exercise adopted a basic two-state indicator for parameter
conditions, for eruption forecasting we recommend working
with a fully probabilistic approach that allows for modeling
variables measured on a continuous scale with continuous
probability density functions, instead of fuzzy logic. New
modeling techniques make this feasible (Hanea et al., 2006;
Cannavò et al., 2017).

Model Complexity
We included in the BN model all observables that are regularly
monitored at Whakaari. The subsequent number of nodes in
the pilot model created challenges for estimating the required
probabilities and for further processing of the data. Within the
2 half-day workshop, our experts succeeded in estimating all
required probabilities, as well as provide comments on other
aspects of the model and the elicitation process. However,
informal feedback indicates that it would have been better to
have longer to think about individual variables. This feedback
is reflected in the spread of responses to some questions (see
Figure 6).

Experts commented in the feedback questionnaire that there
were too many nodes for observations related to seismicity
and to changes in fluid geochemistry. In particular, the nodes

related to recent seismicity did not “behave” as expected. Table 4
indicates that the different seismicity nodes and the different fluid
geochemistry nodes have the same effect on the query nodes
of eruption. Thus, there could be fewer nodes without loss of
information.

For eruption forecasting, the main factor governing the
number of BN nodes is the number of variables being monitored
and observed. Under crisis conditions, these might comprise
four or more data streams; typical examples are: transient or
tremor seismicity, such as conduit-related or spatially diffuse
VTs and LF/hybrid seismicity; geodetic cGPS deformation
for deep pressurization, or EDM distance measurements,
tiltmeters, or radar techniques for shallow/surface movements;
gas fluxes, from DOAS, COSPEC; thermal and remote sensing
images; geophysical measurements such as gravity, resistivity;
and hydrological measurements (see e.g., Science Advisory
Committee for the assessment of the hazards risks associated
with the Soufrière Hills Volcano Montserrat, 2005; Aspinall and
Woo, 2014). If, however, the BN needs to reflect time-varying
states, the number of nodes overall can easily exceed 12 or more
(e.g., Hincks et al., 2014); in this regard, much depends on how
close the volcanic system behavior is to stationary. With modern
computers, the processing burden for a large BN is not critical
and, when data are plentiful, it is feasible to test how much
information each node contributes: it generally makes sense to
omit nodes (or links) which do not add much information to the
outcome or decision. For example, the UNINET BN program
(available at: http://www.lighttwist.net/wp/) can automatically
eliminate links if an individual conditional correlation is below
some threshold. Similarly, tests of a BN for lahar probability on
Montserrat, which re-learned its correlations at each time step
starting from time zero, stabilized after about 10 lahar events had
been observed (T. Hincks, pers. comm.).

The other key factor, which unquestionably will influence the
tractability of a complex BN in a crisis application, is whether
there is a person available with the time and knowledge to run
the BN and communicate the results. In principle, a volcano
observatory should have someone who continually monitors
hazard and risk levels, just as colleagues monitor physical
variables such as seismicity and fluid geochemistry in real time.

BN Modeling in Volcano Monitoring
Our pilot project and several recent publications of BN
applications in volcano monitoring and volcanic multi-hazard
assessment (Aspinall and Woo, 2014; Cannavò et al., 2017;
Sheldrake et al., 2017; Tierz et al., 2017) clearly demonstrate
the usefulness of BN modeling for different aspects of volcano
monitoring, including eruption forecasting. We briefly focus
below on three areas that are important for future BN model
development for eruption forecasting: continuous variables,
dynamic system and expert involvement.

Continuous Variables
One of the main challenges in the model development of
the pilot study was defining thresholds for the states of each
node, because the experts had reservations about representing
continuous observable data with just two states in the BN model.
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The answer to this challenge is working with continuous variables
to reflect the nature of most monitoring data. However, there
is less software available for this task, and more importantly
most modeling techniques for continuous variables assume
joint normality of the data. The assumption of joint normality
seems valid on Mount Etna, Italy (Cannavò et al., 2017), where
the volcanic activity appears much more regular than most
volcanoes around the world. However, the upper tails of many
volcanological datasets exhibit dependencies upon each other.
For example, while observing an extreme value of any one
particular variable is unlikely, if one variable, such as seismicity,
is very high, it is more likely that another, e.g., gas flux, is
also high. Thus, the assumption of joint normal properties
cannot properly represent tail dependence (e.g., Joe, 2014). One
possible solution is to condition the BN on a period of unrest
and only consider the distribution of variables for that time
period.

We have started to work on a BNmodel to answer the question
whether a period of unrest will lead to a large eruption for New
Zealand volcanoes. We recommend investing time and effort
into developing BNmodeling techniques for eruption forecasting
to expand the availability of tools for future hazard and risk
assessments.

Dynamic System
Volcanoes are dynamic systems with magma undergoing
profound changes in physical properties during ascent prior to
an eruption (Sparks, 2003). As a consequence, the relationship
between system variables may change considerably over
time. Dynamic BNs can model sequences of events with
changing dependencies. Basic applications in volcanology
include Aspinall et al. (2006) and a simplified time-stepping
BN used by Aspinall and Woo (2014), while Hincks et al.
(2014) outline the potential for developing models that include
temporal relationships between nodes of a volcanological
dynamic BN. We recommend further exploring the use of
dynamic BNs to get a better understanding of the volcanic
processes.

Stakeholder and Expert Involvement
Volcano experts assess crisis situations and advise on what
might happen next. We do not intend for BNs or any other
quantitative tools to replace the role of a volcano monitoring
team. However, quantitative decision-support tools are crucial to
provide a reproducible, transparent, and documented framework
for giving advice during a crisis.

It is important for the experts who use quantitative models
to understand model limitations. Therefore, we recommend that
the wider volcano monitoring team is involved in the model
development and that a BN model owner, who orchestrates the
development of and maintains the model when it is complete
(or hands it over to another to run for repeated analyses), is
identified.

In the future, we recommend engaging with stakeholders
beyond the volcano monitoring team during all stages of the
model development for wider model buy-in.

Despite efforts to build a library of worldwide volcanic unrest
data (Newhall et al., 2017), future BN model developments
for volcano hazard and risk assessments are likely to involve
expert judgment due to limited data on most volcanoes, even
in well-monitored volcanic centers, such as those in New
Zealand. We recommend following structured expert elicitation
procedures (e.g., Hanea et al., 2016). We also recommend
weighting experts according to their ability to quantify topic-
specific uncertainties based on seed items with known values
(e.g., Colson and Cooke, 2017). In the pilot study we did
not use weighting because we did not have the resources to
develop calibration questions appropriate for target questions on
conditional probabilities. It will be easier to develop appropriate
calibration questions for continuous BNs when asking for
uncertainties associated with physical data, rather than with
probabilities.

We strongly encourage discussion among experts to share
their knowledge and understanding of the volcanic system in
an environment conducive for open discussion yet. At the same
time, the elicitation procedure should allow experts to express
their own scientific beliefs without peer-group or institutional
pressures.

When developing a model for a volcano monitoring team,
we recommend the inclusion of external experts for an outside
perspective. This additional logistical effort and requirement of
resources will have to be balanced carefully with the purpose of
the model.

For the development of the model structure, it would
be useful to select an interested available representative
of each sub-discipline. The representative experts can then
explain their rationale about the chosen variables and their
relationships. Unfortunately, there is little existing guidance
on qualitative expert elicitation, such as the development of
the model structure. Research into procedures for this is
warranted.

CONCLUSIONS

We have started exploring the potential of BN modeling for
eruption forecasting in New Zealand. While our pilot study
of a discrete model to forecast eruptions on Whakaari did
not yield a tool ready for application, it provided substantial
benefits to the science team involved. In particular, the
development of the model structure allowed experts from
different sub-disciplines to share their respective understanding
of the mechanisms and processes leading to eruption. The
simplified graphical presentation of the volcanic system
highlighted assumptions that were made by individual
sub-disciplines but not necessarily widely appreciated
before.

We have found that BNs offer a flexible framework to address
many questions in volcano monitoring and volcanic hazard
and risk assessment. We anticipate that the BN approach will
become essential for handling ever-burgeoning observations and
amounts of monitoring data, and indispensable for assessing
their evidential meaning for operational eruption forecasting.
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Further research into these techniques, in particular continuous
and dynamic modeling, will extend the scope for useful
applications.

Our four key recommendations for future work are: (1)
building causal BN sub-models that allow experts from
different sub-disciplines to express their knowledge and
understanding of particular volcanic processes, which can then
be combined into an over-arching volcanic system network;
(2) applying BN modeling techniques for continuous variables
that more naturally reflect volcano-monitoring data; (3)
carefully choosing the number of variables to be modeled;
and (4) using robust methods, including structured expert
judgment.

Moreover, it is vital that time and effort is invested in
developing any BN forecast decision support tool well before
the next volcanic crisis starts. Once unrest data is coming in,
attention should be given to updating the quantitative aspects of
the network with the data observed.
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