228 research outputs found
Historic drought puts the breaks on earthflows in Northern California
California's ongoing, unprecedented drought is having profound impacts on the state's resources. Here we assess its impact on 98 deep-seated, slow-moving landslides in Northern California. We used aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow velocities spanning 1944–2015 and compared these trends with the Palmer Drought Severity Index, a proxy for soil moisture and pore pressure that governs landslide motion. We find that earthflow velocities reached a historical low in the 2012–2015 drought, but that their deceleration began at the turn of the century in response to a longer-term moisture deficit. Our analysis implies depth-dependent sensitivity of earthflows to climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows exhibiting less systematic velocity variations. These findings have implications for mechanical-hydrologic interactions that link landslide movement with climate change as well as sediment delivery in the region
Mechanics and dynamics of X-chromosome pairing at X inactivation
At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with
respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism
inducing recognition and pairing of the X’s remains, though, elusive. Starting from recent discoveries on the molecular
factors and on the DNA sequences (the so-called "pairing sites") involved, we dissect the mechanical basis of Xic
colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those
experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous
chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a
thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics
has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and
pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model
predictions to available experimental data
Downhole Measurements in the AND-2A Borehole, ANDRILL Southern McMurdo Sound Project, Antarctica
Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful
downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs
successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer,
neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its
backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were
collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf,
except for some intervals that were either inaccessible due to bridging or were shielded by the drill string.
Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first
hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf.
This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of
the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate
change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state
of the modern crustal stress field.Published57-683.2. Tettonica attivaN/A or not JCRrestricte
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
In steep wildfire-burned terrains, intense rainfall can produce large runoff that can trigger highly destructive debris flows. However, the ability
to accurately characterize and forecast debris flow susceptibility in burned terrains using physics-based tools remains limited. Here, we augment
the Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfire
debris flow susceptibility over a regional domain. We perform hindcast simulations using high-resolution weather-radar-derived precipitation and
reanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric river
triggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California's famous Highway 1. Compared to the
baseline, our burn scar simulation yields dramatic increases in total and peak discharge and shorter lags between rainfall onset and peak
discharge, consistent with streamflow observations at nearby US Geological Survey (USGS) streamflow gage sites. For the 404 catchments located in
the simulated burn scar area, median catchment-area-normalized peak discharge increases by ∼ 450 % compared to the baseline. Catchments
with anomalously high catchment-area-normalized peak discharge correspond well with post-event field-based and remotely sensed debris flow
observations. We suggest that our regional postfire debris flow susceptibility analysis demonstrates WRF-Hydro as a compelling new physics-based
tool whose utility could be further extended via coupling to sediment erosion and transport models and/or ensemble-based operational weather
forecasts. Given the high-fidelity performance of our augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazard
forecasts, we argue for its continued development and application in postfire hydrologic and natural hazard assessments.</p
An influenza virus-inspired polymer system for the timed release of siRNA
Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases
Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia
<p>Abstract</p> <p>Background</p> <p>Gestational diabetes mellitus (GDM) is a form of diabetes that occurs during pregnancy. GDM is a well known risk factor for foetal overgrowth, termed macrosomia which is influenced by maternal hypergycemia and endocrine status through placental circulation. The study was undertaken to investigate the implication of growth factors and their receptors in GDM and macrosomia, and to discuss the role of the materno-foeto-placental axis in the <it>in-utero </it>regulation of foetal growth.</p> <p>Methods</p> <p>30 women with GDM and their 30 macrosomic babies (4.75 ± 0.15 kg), and 30 healthy age-matched pregnant women and their 30 newborns (3.50 ± 0.10 kg) were recruited in the present study. Serum concentrations of GH and growth factors, <it>i.e</it>., IGF-I, IGF-BP3, FGF-2, EGF and PDGF-B were determined by ELISA. The expression of mRNA encoding for GH, IGF-I, IGF-BP3, FGF-2, PDGF-B and EGF, and their receptors, <it>i.e</it>., GHR, IGF-IR, FGF-2R, EGFR and PDGFR-β were quantified by using RT-qPCR.</p> <p>Results</p> <p>The serum concentrations of IGF-I, IGF-BP3, EGF, FGF-2 and PDGF-B were higher in GDM women and their macrosomic babies as compared to their respective controls. The placental mRNA expression of the growth factors was either upregulated (FGF-2 or PDGF-B) or remained unaltered (IGF-I and EGF) in the placenta of GDM women. The mRNA expression of three growth factor receptors, <it>i.e</it>., IGF-IR, EGFR and PDGFR-β, was upregulated in the placenta of GDM women. Interestingly, serum concentrations of GH were downregulated in the GDM women and their macrosomic offspring. Besides, the expression of mRNAs encoding for GHR was higher, but that encoding for GH was lower, in the placenta of GDM women than control women.</p> <p>Conclusions</p> <p>Our results demonstrate that growth factors might be implicated in GDM and, in part, in the pathology of macrosomia via materno-foeto-placental axis.</p
Gene and genon concept: coding versus regulation: A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology
We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon
Group II Intron-Based Gene Targeting Reactions in Eukaryotes
Mobile group II introns insert site-specifically into DNA target sites by a mechanism termed retrohoming in which the excised intron RNA reverse splices into a DNA strand and is reverse transcribed by the intron-encoded protein. Retrohoming is mediated by a ribonucleoprotein particle that contains the intron-encoded protein and excised intron RNA, with target specificity determined largely by base pairing of the intron RNA to the DNA target sequence. This feature enabled the development of mobile group II introns into bacterial gene targeting vectors ("targetrons") with programmable target specificity. Thus far, however, efficient group II intron-based gene targeting reactions have not been demonstrated in eukaryotes.By using a plasmid-based Xenopus laevis oocyte microinjection assay, we show that group II intron RNPs can integrate efficiently into target DNAs in a eukaryotic nucleus, but the reaction is limited by low Mg(2+) concentrations. By supplying additional Mg(2+), site-specific integration occurs in up to 38% of plasmid target sites. The integration products isolated from X. laevis nuclei are sensitive to restriction enzymes specific for double-stranded DNA, indicating second-strand synthesis via host enzymes. We also show that group II intron RNPs containing either lariat or linear intron RNA can introduce a double-strand break into a plasmid target site, thereby stimulating homologous recombination with a co-transformed DNA fragment at frequencies up to 4.8% of target sites. Chromatinization of the target DNA inhibits both types of targeting reactions, presumably by impeding RNP access. However, by using similar RNP microinjection methods, we show efficient Mg(2+)-dependent group II intron integration into plasmid target sites in zebrafish (Danio rerio) embryos and into plasmid and chromosomal target sites in Drosophila melanogster embryos, indicating that DNA replication can mitigate effects of chromatinization.Our results provide an experimental foundation for the development of group II intron-based gene targeting methods for higher organisms
Down-Regulated NOD2 by Immunosuppressants in Peripheral Blood Cells in Patients with SLE Reduces the Muramyl Dipeptide-Induced IL-10 Production
Pattern recognition receptors (PRRs) such as Toll-like receptors are aberrantly expressed of peripheral blood mononuclear cells (PBMCs) in systemic lupus erythematosus (SLE) patients, for playing immunopathological roles. basal productions of cytokines (IL-6, IL-8 and IL-10) were significantly increased in immunosuppressant naïve patients and patients with active disease despite immunosuppressants compared with HCs. Upon MDP stimulaiton, relative induction (%) of cytokines (IL-1β) from PBMC was significantly increased in immunosuppressant naïve patients with inactive disease, and patients with active disease despite immunosuppressant treatment compared with HCs. Immunosuppressant usage was associated with a decreased basal production and MDP induced relative induction (%) of IL-10 in patients with inactive disease compared with immunosuppressant naïve patients and HCs.Bacterial exposure may increase the NOD2 expression in monocytes in immunosuppressant naïve SLE patients which can subsequently lead to aberrant activation of PBMCs to produce proinflammatory cytokines, implicating the innate immune response for extracellular pathogens in the immunopathological mechanisms in SLE. Immunosuppressant therapy may downregulate NOD2 expression in CD8+ T lymphocytes, monocytes, and DCs in SLE patients which subsequently IL-10 reduction, contributing towards the regulation of immunopathological mechanisms of SLE, at the expense of increasing risk of bacterial infection
- …