40 research outputs found

    Experimental study of the effect of pump pulse duration on liquid crystal laser performance

    Get PDF
    Much work has been done to understand the factors that impact photonic band-edge liquid crystal (LC) laser threshold and slope efficiency, two parameters often stated to quantify performance. Conventionally, LC lasers are optically pumped using Q-switched lasers with a fixed pulse duration, and thus the effect of pump pulse duration on LC laser performance has received little attention. While some studies have been published at different pump pulse durations, these use different laser sources and experimental conditions, making the data incomparable. By exploiting a recent breakthrough in laser diode pumping, our experimental results prove and quantify the detrimental effect of an increase in pump pulse duration on LC laser performance. We also show that the dependency of threshold on pump pulse duration depends on how threshold is defined, owing to an ambiguity in the definition of pulse energy in systems where peak power and pulse duration can be independently controlled. For improved comparison within the literature on LC laser device performance, we thus propose an alternative convention, whereby threshold is stated in units of peak power density

    Modeling of laser generation in a Fabry–Pérot-Tamm structure with a nematic liquid crystal layer

    Get PDF
    In the presented work, the possibility of controlling laser generation using a nematic liquid crystal (NLC) in a hybrid layered structure consisting of a thin metal layer (Ag), a layer of NLC doped with a light-absorbing dye, and a distributed Bragg reflector (DBR) with a rectangular refractive index profile is theoretically studied. Spectral dependencies of the reflection, transmission, and absorption coefficients of light as well as the localization coefficient of the light field in NLC within the photonic bandgap of the DBR are obtained. Narrow dips in the reflection coefficient and peaks in the transmission coefficient are achieved due to the excitation of plasmons at the Ag-NLC interface. The dependence of the spectral position and magnitude of the plasmonic dips/peaks and the enhancement of the light field in the NLC medium on the thickness and orientation of the NLC layer as well as the impact of a light-absorbing dye doping are investigated. Theoretical calculations of the temporal dependencies of luminescence pulses for pumping pulses of different power settings (below, above, and at the threshold of laser generation) and different values of light absorption in the dye-doped NLC medium are performed, taking into account the peculiarities of the optical properties of the dye-doped NLC.This article is included in a Special Topic Collection, “Plasmonics and Optical Metastructures.

    Morpholino Oligonucleotide Cross-Linked Hydrogels as Portable Optical Oligonucleotide Biosensors

    Get PDF
    © 2018 American Chemical Society. Morpholino Oligonucleotides (MOs), an uncharged DNA analogue, are functionalized with an acrylamide moiety and incorporated into polymer hydrogels as responsive cross-links for microRNA sequence detection. The MO cross-links can be selectively cleaved by a short target analyte single-stranded DNA (ssDNA) sequence based on microRNA, inducing a distinct swelling response measured optically. The MO cross-links offer significant improvement over DNA based systems through improved thermal stability, no salt requirement and 1000-fold improved sensitivity over a comparative biosensor, facilitating a wider range of sensing conditions. Analysis was also achieved using a mobile phone camera, demonstrating portability
    corecore