68 research outputs found
Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study
BACKGROUND: Assessing the spectrum of disease risk associated with hypertriglyceridemia is needed to inform potential benefits from emerging triglyceride lowering treatments. We sought to examine the associations between a full range of plasma triglyceride concentration with five clinical outcomes. METHODS: We used linked data from primary and secondary care for 15 M people, to explore the association between triglyceride concentration and risk of acute pancreatitis, chronic pancreatitis, new onset diabetes, myocardial infarction and all-cause mortality, over a median of 6-7 years follow up. RESULTS: Triglyceride concentration was available for 1,530,411 individuals (mean age 56·6 ± 15·6 years, 51·4% female), with a median of 1·3 mmol/L (IQR: 0.9.to 1.9). Severe hypertriglyceridemia, defined as > 10 mmol/L, was identified in 3289 (0·21%) individuals including 620 with > 20 mmol/L. In multivariable analyses, a triglyceride concentration > 20 mmol/L was associated with very high risk for acute pancreatitis (Hazard ratio (HR) 13·55 (95% CI 9·15-20·06)); chronic pancreatitis (HR 25·19 (14·91-42·55)); and high risk for diabetes (HR 5·28 (4·51-6·18)) and all-cause mortality (HR 3·62 (2·82-4·65)) when compared to the reference category of ≤ 1·7 mmol/L. An association with myocardial infarction, however, was only observed for more moderate hypertriglyceridaemia between 1.7 and 10 mmol/L. We found a risk interaction with age, with higher risks for all outcomes including mortality among those ≤ 40 years compared to > 40 years. CONCLUSIONS: We highlight an exponential association between severe hypertriglyceridaemia and risk of incident acute and chronic pancreatitis, new diabetes, and mortality, especially at younger ages, but not for myocardial infarction for which only moderate hypertriglyceridemia conferred risk
Effects of Bariatric Surgery on Human Small Artery Function Evidence for Reduction in Perivascular Adipocyte Inflammation, and the Restoration of Normal Anticontractile Activity Despite Persistent Obesity
ObjectivesThe aim of this study was to investigate the effects of bariatric surgery on small artery function and the mechanisms underlying this.BackgroundIn lean healthy humans, perivascular adipose tissue (PVAT) exerts an anticontractile effect on adjacent small arteries, but this is lost in obesity-associated conditions such as the metabolic syndrome and type II diabetes where there is evidence of adipocyte inflammation and increased oxidative stress.MethodsSegments of small subcutaneous artery and perivascular fat were harvested from severely obese individuals before (n = 20) and 6 months after bariatric surgery (n = 15). Small artery contractile function was examined in vitro with wire myography, and perivascular adipose tissue (PVAT) morphology was assessed with immunohistochemistry.ResultsThe anticontractile activity of PVAT was lost in obese patients before surgery when compared with healthy volunteers and was restored 6 months after bariatric surgery. In vitro protocols with superoxide dismutase and catalase rescued PVAT anticontractile function in tissue from obese individuals before surgery. The improvement in anticontractile function after surgery was accompanied by improvements in insulin sensitivity, serum glycemic indexes, inflammatory cytokines, adipokine profile, and systolic blood pressure together with increased PVAT adiponectin and nitric oxide bioavailability and reduced macrophage infiltration and inflammation. These changes were observed despite the patients remaining severely obese.ConclusionsBariatric surgery and its attendant improvements in weight, blood pressure, inflammation, and metabolism collectively reverse the obesity-induced alteration to PVAT anticontractile function. This reversal is attributable to reductions in local adipose inflammation and oxidative stress with improved adiponectin and nitric oxide bioavailability
Bariatric Surgery Leads to a Reduction in Antibodies to Apolipoprotein A-1: a Prospective Cohort Study
Purpose: Autoantibodies against apolipoprotein A-1 have been associated with cardiovascular disease, poorer CV outcomes and all-cause mortality in obese individuals. The impact of bariatric surgery (BS) on the presence of circulating anti-apoA-1 IgG antibodies is unknown. This study aimed to determine the effect of bariatric surgery on auto-antibodies titres against Apolipoprotein A-1 (anti-apoA-1 IgG), looking for changes associated with lipid parameters, insulin resistance, inflammatory profile and percentage of excess body mass index loss (%EBMIL).Materials and methods: We assessed 55 patients (40 women) before, 6 and 12 months post-operatively. Baseline and post-operative clinical history and measurements of body mass index (BMI), serum cholesterol, triglycerides, high- and low-density lipoprotein cholesterol (HDL-C and LDL-C), apoA-1, highly sensitive C-reactive protein (hsCRP), fasting glucose (FG), glycated haemoglobin (HbA1c) and HOMA-IR were taken at each point. Human anti-apoA-1 IgG were measured by ELISA.Results: The mean age of participants was 50 years. BS significantly improved BMI, %EBMIL triglycerides, HDL-C, apoA-1, hsCRP, HBA1c, FG and HOMA-IR. Baseline anti-apoA-1 IgG seropositivity was 25% and was associated with lower apoA-1 and higher hsCRP levels. One year after BS, anti-apoA-1 IgG seropositivity decreased to 15% (p = 0.007) and median anti-apoA-1 IgG values decreased from 0.70 (0.56-0.84) to 0.47 (0.37-0.61) AU (p Conclusion: Bariatric surgery results in significant reduction in anti-apoA-1 IgG levels, which may adversely influence weight loss. The exact mechanisms underpinning these results are elusive and require further study before defining any clinical recommendations.</p
Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs
Background: Despite advances in pharmacotherapy of lipid disorders, many dyslipidemic patients do not attain sufficient lipid lowering to mitigate risk of atherosclerotic cardiovascular disease. Several classes of novel lipid-lowering agents are being evaluated to reduce atherosclerotic cardiovascular disease risk. Lipoprotein apheresis (LA) is effective in acutely lowering the plasma concentrations of atherogenic lipoproteins including low-density lipoprotein cholesterol and lipoprotein(a), and novel lipid-lowering drugs may dampen the lipid rebound effect of LA, with the possibility that LA frequency may be decreased, in some cases even be discontinued. Sources of material: This document builds on current American Society for Apheresis guidelines and, for the first time, makes recommendations from summarized data of the emerging lipid-lowering drug classes (inhibitors of proprotein convertase subtilisin/kexin type 9 or microsomal triglyceride transfer protein, high-density lipoprotein mimetic), including the available evidence on combination therapy with LA with respect to the management of patients with dyslipidemia. Abstract of findings: Recommendations for different indications are given based on the latest evidence. However, except for lomitapide in homozygous familial hypercholesterolemia and alirocumab/evolocumab in heterozygous familial hypercholesterolemia subjects, limited data are available on the effectiveness and safety of combination therapy. More studies on combining LA with novel lipid-lowering drugs are needed. Conclusion: Novel lipid-lowering agents have potential to improve the performance of LA, but more evidence is needed. The Multidisciplinary International Group for Hemapheresis TherapY and Metabolic DIsturbances Contrast scientific society aims to establish an international registry of clinical experience on LA combination therapy to expand the evidence on this treatment in individuals at high cardiovascular disease risk
Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study
Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Familial hypercholesterolaemia in children and adolescents from 48 countries : a cross-sectional study
Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life.peer-reviewe
- …