84 research outputs found

    Classical sickle beta-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations

    Get PDF
    Background: The sickle (βs) mutation in the beta-globin gene (HBB) occurs on five "classical" βs haplotype backgrounds in ethnic groups of African ancestry. Strong selection in favour of the βs allele - a consequence of protection from severe malarial infection afforded by heterozygotes - has been associated with a high degree of extended haplotype similarity. The relationship between classical βs haplotypes and long-range haplotype similarity may have both anthropological and clinical implications, but to date has not been explored. Here we evaluate the haplotype similarity of classical βs haplotypes over 400 kb in population samples from Jamaica, The Gambia, and among the Yoruba of Nigeria (Hapmap YRI). Results: The most common βs sub-haplotype among Jamaicans and the Yoruba was the Benin haplotype, while in The Gambia the Senegal haplotype was observed most commonly. Both subtypes exhibited a high degree of long-range haplotype similarity extending across approximately 400 kb in all three populations. This long-range similarity was significantly greater than that seen for other haplotypes sampled in these populations (P < 0.001), and was independent of marker choice and marker density. Among the Yoruba, Benin haplotypes were highly conserved, with very strong linkage disequilibrium (LD) extending a megabase across the βs mutation. Conclusion: Two different classical βs haplotypes, sampled from different populations, exhibit comparable and extensive long-range haplotype similarity and strong LD. This LD extends across the adjacent recombination hotspot, and is discernable at distances in excess if 400 kb. Although the multicentric geographic distribution of βs haplotypes indicates strong subdivision among early Holocene sub-Saharan populations, we find no evidence that selective pressures imposed by falciparum malaria varied in intensity or timing between these subpopulations. Our observations also suggest that cis-acting loci, which may influence outcomes in sickle cell disease, could lie considerable distances away from β-globin

    Genetic Variation on Chromosome 6 Influences F Cell Levels in Healthy Individuals of African Descent and HbF Levels in Sickle Cell Patients

    Get PDF
    Fetal haemoglobin (HbF) is a major ameliorating factor in sickle cell disease. We investigated if a quantitative trait locus on chromosome 6q23 was significantly associated with HbF and F cell levels in individuals of African descent. Single nucleotide polymorphisms (SNPs) in a 24-kb intergenic region, 33-kb upstream of the HBS1L gene and 80-kb upstream of the MYB gene, were typed in 177 healthy Afro-Caribbean subjects (AC) of approximately 7% European admixture, 631 healthy Afro-Germans (AG, a group of African and German descendents located in rural Jamaica with about 20% European admixture), 87 West African and Afro-Caribbean individuals with sickle cell anaemia (HbSS), as well as 75 Northern Europeans, which served as a contrasting population. Association with a tag SNP for the locus was detected in all four groups (AC, P = 0.005, AG, P = 0.002, HbSS patients, P = 0.019, Europeans, P = 1.5×10−7). The association signal varied across the interval in the African-descended groups, while it is more uniform in Europeans. The 6q QTL for HbF traits is present in populations of African origin and is also acting in sickle cell anaemia patients. We have started to distinguish effects originating from European and African ancestral populations in our admixed study populations

    Biallelic variants in COX4I1 associated with a novel phenotype resembling Leigh syndrome with developmental regression, intellectual disability, and seizures

    Get PDF
    Autosomal recessive COX4I1 deficiency has been previously reported in a single individual with a homozygous pathogenic variant in COX4I1, who presented with short stature, poor weight gain, dysmorphic features, and features of Fanconi anemia. COX4I1 encodes subunit 4, isoform 1 of cytochrome c oxidase. Cytochrome c oxidase is a respiratory chain enzyme that plays an important role in mitochondrial electron transport and reduces molecular oxygen to water leading to the formation of ATP. Defective production of cytochrome c oxidase leads to a variable phenotypic spectrum ranging from isolated myopathy to Leigh syndrome. Here, we describe two siblings, born to consanguineous parents, who presented with encephalopathy, developmental regression, hypotonia, pathognomonic brain imaging findings resembling Leigh‐syndrome, and a novel homozygous variant on COX4I1, expanding the known clinical phenotype associated with pathogenic variants in COX4I1

    One-carbon metabolism in children with marasmus and kwashiorkor

    Get PDF
    BACKGROUND: Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor\u27s disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS: Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS: Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P \u3c 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P \u3c 0·0001 & 115 (± 50) P \u3c 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION: Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome\u27s pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING: The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS

    Hydroxyurea-Induced miRNA Expression in Sickle Cell Disease Patients in Africa

    Get PDF
    Hydroxyurea (HU) is clinically beneficial in sickle cell disease (SCD) through fetal hemoglobin (HbF) induction; however, the mechanism of HU is not yet fully elucidated. Selected miRNAs have been associated with HU-induced HbF production. We have investigated differential HU-induced global miRNA expression in peripheral blood of adult SCD patients in patients from Congo, living in South Africa. We found 22 of 798 miRNAs evaluated that were differentially expressed under HU treatment, with the majority (13/22) being functionally associated with HbF-regulatory genes, including BCL11A (miR-148b-3p, miR-32-5p, miR-340-5p, and miR-29c-3p), MYB (miR-105-5p), and KLF-3 (miR-106b-5), and SP1 (miR-29b-3p, miR-625-5p, miR-324-5p, miR-125a-5p, miR-99b-5p, miR-374b-5p, and miR-145-5p). The preliminary study provides potential additional miRNA candidates for therapeutic exploration

    Novel parent-of-origin-specific differentially methylated loci on chromosome 16

    Get PDF
    BACKGROUND: Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS: To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS: Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV

    Genetic architecture of laterality defects revealed by whole exome sequencing

    Get PDF
    Aberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects

    UGT1A1 sequence variants and bilirubin levels in early postnatal life: a quantitative approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fundamental to definitively identifying neonates at risk of developing significant hyperbilirubinemia is a better understanding of the genetic factors associated with early bilirubin rise. Previous genetic studies have focused on the UGT1A1 gene, associating common variation in the coding or promoter regions with qualitative assessments of bilirubin (i.e. significantly elevated or not). These studies have had conflicting results and limited success. We chose to approach the problem by focusing on the quantitative (absolute) change in bilirubin levels early in post-natal life. We apply this approach to the UGT1A1 gene - exploring the contribution of both rare and common variants to early bilirubin changes.</p> <p>Methods</p> <p>We sequenced the exons, PBREM, 5'-, and 3'- regions of the UGT1A1 gene in 80 otherwise healthy term neonates who had repeat bilirubin levels measured within the first five days of life.</p> <p>Results</p> <p>Three novel coding variants were observed, but there was no clear relationship between rare coding variants and bilirubin rise. Adjusted linear regression models fit to evaluate the relationship between changing bilirubin levels and common UGT1A1variants found that among 39 neonates whose bilirubin was resampled within 33 hours, individuals homozygous for the mutant allele of a 3'UTR SNP had significantly smaller changes in bilirubin (P = 0.003) than individuals carrying the wild-type allele.</p> <p>Conclusions</p> <p>Collectively, rare UGT1A1 coding variants do not appear to play a prominent role in determining early bilirubin levels; however common variants in the 3' UTR of UGT1A1 may modulate the early bilirubin rise. A quantitative approach to evaluating early bilirubin kinetics provides a more robust framework in which to better understand the genetics of neonatal hyperbilirubinemia.</p

    Phenotypic expansion in DDX3X - a common cause of intellectual disability in females

    Get PDF
    De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders

    Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    Get PDF
    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals
    corecore