1,253 research outputs found

    Long-term culture captures injury-repair cycles of colonic stem cells

    Get PDF
    The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hop

    Local density of states and scanning tunneling currents in graphene

    Full text link
    We present exact analytical calculations of scanning tunneling currents in locally disordered graphene using a multimode description of the microscope tip. Analytical expressions for the local density of states (LDOS) are given for energies beyond the Dirac cone approximation. We show that the LDOS at the AA and BB sublattices of graphene are out of phase by π\pi implying that the averaged LDOS, as one moves away from the impurity, shows no trace of the 2qF2q_F (with qFq_F the Fermi momentum) Friedel modulation. This means that a STM experiment lacking atomic resolution at the sublattice level will not be able of detecting the presence of the Friedel oscillations [this seems to be the case in the experiments reported in Phys. Rev. Lett. {\bf 101}, 206802 (2008)]. The momentum maps of the LDOS for different types of impurities are given. In the case of the vacancy, 2qF2q_F features are seen in these maps. In all momentum space maps, KK and K+KK+K^\prime features are seen. The K+KK+K^\prime features are different from what is seen around zero momentum. An interpretation for these features is given. The calculations reported here are valid for chemical substitution impurities, such as boron and nitrogen atoms, as well as for vacancies. It is shown that the density of states close to the impurity is very sensitive to type of disorder: diagonal, non-diagonal, or vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the local density of states presents strong resonances at finite energies, which leads to steps in the scanning tunneling currents and to suppression of the Fano factor.Comment: 21 pages. Figures 6 and 7 are correctly displayed in this new versio

    The Manchurian Walnut Genome: Insights into Juglone and Lipid Biosynthesis

    Get PDF
    Background Manchurian walnut (Juglans mandshurica Maxim.) is a tree with multiple industrial uses and medicinal properties in the Juglandaceae family (walnuts and hickories). J. mandshurica produces juglone, which is a toxic allelopathic agent and has potential utilization value. Furthermore, the seed of J. mandshurica is rich in various unsaturated fatty acids and has high nutritive value. Findings Here, we present a high-quality chromosome-scale reference genome assembly and annotation for J. mandshurica (n = 16) with a contig N50 of 21.4 Mb by combining PacBio high-fidelity reads with high-throughput chromosome conformation capture data. The assembled genome has an estimated sequence size of 548.7 Mb and consists of 657 contigs, 623 scaffolds, and 40,453 protein-coding genes. In total, 60.99% of the assembled genome consists of repetitive sequences. Sixteen super-scaffolds corresponding to the 16 chromosomes were assembled, with a scaffold N50 length of 33.7 Mb and a BUSCO complete gene percentage of 98.3%. J. mandshurica displays a close sequence relationship with Juglans cathayensis, with a divergence time of 13.8 million years ago. Combining the high-quality genome, transcriptome, and metabolomics data, we constructed a gene-to-metabolite network and identified 566 core and conserved differentially expressed genes, which may be involved in juglone biosynthesis. Five CYP450 genes were found that may contribute to juglone accumulation. NAC, bZip, NF-YA, and NF-YC are positively correlated with the juglone content. Some candidate regulators (e.g., FUS3, ABI3, LEC2, and WRI1 transcription factors) involved in the regulation of lipid biosynthesis were also identified. Conclusions Our genomic data provide new insights into the evolution of the walnut genome and create a new platform for accelerating molecular breeding and improving the comprehensive utilization of these economically important tree species

    Pseuduscalar Heavy Quarkonium Decays With Both Relativistic and QCD Radiative Corrections

    Full text link
    We estimate the decay rates of ηc2γ\eta_c\rightarrow 2\gamma, ηc2γ\eta_c'\rightarrow 2\gamma, and J/ψe+eJ/\psi\rightarrow e^+ e^-, ψe+e\psi^\prime\rightarrow e^+e^-, by taking into account both relativistic and QCD radiative corrections. The decay amplitudes are derived in the Bethe-Salpeter formalism. The Bethe-Salpeter equation with a QCD-inspired interquark potential are used to calculate the wave functions and decay widths for these ccˉc\bar{c} states. We find that the relativistic correction to the ratio RΓ(ηc2γ)/Γ(J/ψe+e)R\equiv \Gamma (\eta_c \rightarrow 2\gamma)/ \Gamma (J/ \psi \rightarrow e^+ e^-) is negative and tends to compensate the positive contribution from the QCD radiative correction. Our estimate gives Γ(ηc2γ)=(67) keV\Gamma(\eta_c \rightarrow 2\gamma)=(6-7) ~keV and Γ(ηc2γ)=2 keV\Gamma(\eta_c^\prime \rightarrow 2\gamma)=2 ~keV, which are smaller than their nonrelativistic values. The hadronic widths Γ(ηc2g)=(1723) MeV\Gamma(\eta_c \rightarrow 2g)=(17-23) ~MeV and Γ(ηc2g)=(57) MeV\Gamma(\eta_c^\prime \rightarrow 2g)=(5-7)~MeV are then indicated accordingly to the first order QCD radiative correction, if αs(mc)=0.260.29\alpha_s(m_c)=0.26-0.29. The decay widths for bbˉb\bar b states are also estimated. We show that when making the assmption that the quarks are on their mass shells our expressions for the decay widths will become identical with that in the NRQCD theory to the next to leading order of v2v^2 and αs\alpha_s.Comment: 14 pages LaTex (2 figures included

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    The Universal One-Loop Effective Action

    Full text link
    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version accepted for publication in JHE

    Electromagnetic Annihilation Rates of χc0\chi_{c0} and χc2\chi_{c2} with Both Relativistic and QCD Radiative Corrections

    Full text link
    We estimate the electromagnetic decay rates of χc0γγ\chi_{c0}\rightarrow \gamma\gamma and χc2γγ\chi_{c2}\rightarrow\gamma\gamma by taking into account both relativistic and QCD radiative corrections. The decay rates are derived in the Bethe-Salpeter formalism and the QCD radiative corrections are included in accordance with factorization assumption. Using a QCD-inspired interquark potential, we obtain relativistic BS wavefunctions of χc0\chi_{c0} and χc2\chi_{c2} by solving BS equations for the corresponding 2S+1LJ^{2S+1}L_J states. Our numerical result for the ratio R=Γ(χc0γγ)Γ(χc2γγ)R=\frac{\Gamma(\chi_{c0}\rightarrow\gamma\gamma)}{\Gamma(\chi_{c2} \rightarrow\gamma\gamma)} is about 111311-13 which agrees with the update E760 experimental data. Explicit calculations show that the relativistic corrections due to spin-dependent interquark forces induced by gluon exchange enhance the ratio RR substantially and its value is insensitive to the choice of parameters that characterize the interquark potential. Our expressions for the decay widths are identical with that obtained in the NRQCD theory to the next-to-leading order in v2v^2 and αs\alpha_s. Moreover, we have determined two new coefficents in the nonperturbative matrix elements for these decay widths.Comment: 16 pages LaTex (2 figures included

    Dalitz analysis of B --> K pi psi' decays and the Z(4430)+

    Full text link
    From a Dalitz plot analysis of B --> K pi psi' decays, we find a signal for Z(4430)+ --> pi+ psi' with a mass M= (4443(+15-12)(+19-13))MeV/c^2, width Gamma= (107(+86-43)(+74-56))MeV, product branching fraction BR(B0 --> K- Z(4430)+) x BR(Z(4430)+ --> pi+ psi')= (3.2(+1.8-0.9)(+5.3-1.6)) x 10^{-5}, and significance of 6.4sigma that agrees with previous Belle measurements based on the same data sample. In addition, we determine the branching fraction BR(B^0 --> K*(892)^0 psi')= (5.52(+0.35-0.32)(+0.53-0.58)) x 10^{-4} and the fraction of K*(892)^0 mesons that are longitudinally polarized f_L= 44.8(+4.0-2.7)(+4.0-5.3)%. These results are obtained from a 605fb^{-1} data sample that contains 657 million B-anti-B pairs collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+e- collider.Comment: Final version published in PRD(RC

    Evidence for a new resonance and search for the Y(4140) in γγϕJ/ψ\gamma \gamma \to \phi J/\psi

    Full text link
    The process \gamma \gamma \to \phi \jpsi is measured for \phi \jpsi masses between threshold and 5 GeV/c2{\it c}^2, using a data sample of 825 fb1^{-1} collected with the Belle detector. A narrow peak of 8.83.2+4.28.8^{+4.2}_{-3.2} events, with a significance of 3.2 standard deviations including systematic uncertainty, is observed. The mass and natural width of the structure (named X(4350)) are measured to be (4350.65.1+4.6(stat)±0.7(syst))MeV/c2(4350.6^{+4.6}_{-5.1}(\rm{stat})\pm 0.7(\rm{syst})) \hbox{MeV}/{\it c}^2 and (139+18(stat)±4(syst))MeV(13^{+18}_{-9}(\rm{stat})\pm 4(\rm{syst})) \hbox{MeV}, respectively. The product of its two-photon decay width and branching fraction to \phi\jpsi is (6.72.4+3.2(stat)±1.1(syst))eV(6.7^{+3.2}_{-2.4}(\rm{stat}) \pm 1.1(\rm{syst})) \hbox{eV} for JP=0+J^P=0^+, or (1.50.6+0.7(stat)±0.3(syst))eV(1.5^{+0.7}_{-0.6}(\rm{stat}) \pm 0.3(\rm{syst})) \hbox{eV} for JP=2+J^P=2^+. No signal for the Y(4140)\to \phi \jpsi structure reported by the CDF Collaboration in B\to K^+ \phi \jpsi decays is observed, and limits of \Gamma_{\gamma \gamma}(Y(4140)) \BR(Y(4140)\to\phi \jpsi)<41 \hbox{eV} for JP=0+J^P=0^+ or <6.0eV<6.0 \hbox{eV} for JP=2+J^P=2^+ are determined at the 90% C.L. This disfavors the scenario in which the Y(4140) is a Ds+DsD_{s}^{\ast+} {D}_{s}^{\ast-} molecule.Comment: 9 pages, 3 figures, publication in Phys. Rev. Lett. 104, 112004, 201

    Lower bounds of altitudes for pulsar γ\gamma-ray radiation

    Full text link
    Determining radiation location observationally plays a very important role in testing the pulsar radiation models. One-photon pair production in the strong magnetic field, γe+e1\gamma-e^{+}e^{1}, is one of the important physical processes in pulsar radiation mechanisms. Photons near pulsar surface with sufficient energy will be absorbed in the magnetosphere and the absorption optical depth for these GeV γ\gamma-ray photons is usually large. In this paper, we include the aberrational, rotational and general relativistic effects and calculate the γ\gamma-B optical depth for γ\gamma-ray photons. Then we use the derived optical depth to determine the radiation altitude lower bounds for photons with given energies. As a case study, we calculate the lower bounds of radiation altitudes of Crab pulsar for photons with energy from 5 GeV to 1 TeV.Comment: 11 pages, 5 figures,Accepted by MNRA
    corecore