51,504 research outputs found

    TeV resonances in top physics at the LHC

    Get PDF
    We consider the possibility of studying novel particles at the TeV scale with enhanced couplings to the top quark via top quark pair production at the LHC and VLHC. In particular we discuss the case of neutral scalar and vector resonances associated with a strongly interacting electroweak symmetry breaking sector. We constrain the couplings of these resonances by imposing appropriate partial wave unitarity conditions and known low energy constraints. We evaluate the new physics signals via WW -> tt~ for various models without making approximation for the initial state W bosons, and optimize the acceptance cuts for the signal observation. We conclude that QCD backgrounds overwhelm the signals in both the LHC and a 200 TeV VLHC, making it impossible to study this type of physics in the tt~ channel at those machines.Comment: 15p, add. comments to clarify model, +2 ref., version to appear PR

    Criticality and Continuity of Explosive Site Percolation in Random Networks

    Full text link
    This Letter studies the critical point as well as the discontinuity of a class of explosive site percolation in Erd\"{o}s and R\'{e}nyi (ER) random network. The class of the percolation is implemented by introducing a best-of-m rule. Two major results are found: i). For any specific mm, the critical percolation point scales with the average degree of the network while its exponent associated with mm is bounded by -1 and ∌−0.5\sim-0.5. ii). Discontinuous percolation could occur on sparse networks if and only if mm approaches infinite. These results not only generalize some conclusions of ordinary percolation but also provide new insights to the network robustness.Comment: 5 pages, 5 figure

    Configurational temperatures and interactions in charge-stabilized colloid

    Full text link
    We demonstrate that the configurational temperature formalism can be derived from the classical hypervirial theorem, and introduce a hierarchy of hyperconfigurational temperature definitions, which are particularly well suited for experimental studies. We then use these analytical tools to probe the electrostatic interactions in monolayers of charge-stabilized colloidal spheres confined by parallel glass surfaces. The configurational and hyperconfigurational temperatures, together with a novel thermodynamic sum rule, provide previously lacking self-consistency tests for interaction measurements based on digital video microscopy, and thereby cast new light on controversial reports of confinement-induced like-charge attractions. We further introduce a new method for measuring the pair potential directly that uses consistency of the configurational and hyperconfigurational temperatures as a set of constraints for a model-free search.Comment: 15 pages, 12 figures, submitted to J. Chem. Phy

    Dynamics of compressible edge and bosonization

    Full text link
    We work out the dynamics of the compressible edge of the quantum Hall system based on the electrostatic model of Chklovskii et al.. We introduce a generalized version of Wen's hydrodynamic quantization approach to the dynamics of sharp edge and rederive Aleiner and Glazman's earlier result of multiple density modes. Bosonic operators of density excitations are used to construct fermions at the interface of the compressible and incompressible region. We also analyze the dynamics starting with the second-quantized Hamiltonian in the lowest Landau level and work out the time development of density operators. Contrary to the hydrodynamic results, the density modes are strongly coupled. We argue that the coupling suppresses the propagation of all acoustic modes, and that the excitations with large wavevectors are subject to decay due to coupling to the dissipative acoustic modes.A possible correction to the tunneling density of states is discussed.Comment: 7 pages, Revtex, 1 figur

    Revised research about chaotic dynamics in Manko et al. spacetime

    Full text link
    A recent work by Dubeibe et al. [Phys. Rev. D 75, 023008 (2007)] stated that chaos phenomenon of test particles in gravitational field of rotating neutron stars which are described by Manko, Sanabria-Gomez, and Manko (Manko et al.) metric can only occur when the stars have oblate deformation. But the chaotic motions they found are limited in a very narrow zone which is very close to the center of the massive bodies. This paper argues that this is impossible because the region is actually inside of the stars, so the motions cannot exist at this place. In this paper, we scan all parameters space and find chaos and unstable fixed points outside of stars with big mass-quadrupole moments. The calculations show that chaos can only occur when the stars have prolate deformation. Because real deformation of stars should be oblate, all orbits of test particles around the rotating neutron stars described by Manko et al. solutions are regular. The case of nonzero dipolar magnetic moment has also been taken into account in this study.Comment: 6 pages, 5 figure

    Synchronization Conditions for Multiagent Systems with Intrinsic Nonlinear Dynamics

    Get PDF
    published_or_final_versio

    Robust synchronization via homogeneous parameter-dependent polynomial contraction matrix

    Get PDF
    published_or_final_versio

    Towards a grid-enabled simulation framework for nano-CMOS electronics

    Get PDF
    The electronics design industry is facing major challenges as transistors continue to decrease in size. The next generation of devices will be so small that the position of individual atoms will affect their behaviour. This will cause the transistors on a chip to have highly variable characteristics, which in turn will impact circuit and system design tools. The EPSRC project "Meeting the Design Challenges of Nano-CMOS Electronics" (Nana-CMOS) has been funded to explore this area. In this paper, we describe the distributed data-management and computing framework under development within Nano-CMOS. A key aspect of this framework is the need for robust and reliable security mechanisms that support distributed electronics design groups who wish to collaborate by sharing designs, simulations, workflows, datasets and computation resources. This paper presents the system design, and an early prototype of the project which has been useful in helping us to understand the benefits of such a grid infrastructure. In particular, we also present two typical use cases: user authentication, and execution of large-scale device simulations

    Supersymmetric QCD flavor changing top quark decay

    Get PDF
    We present a detailed and complete calculation of the gluino and scalar quarks contribution to the flavour-changing top quark decay into a charm quark and a photon, gluon, or a Z boson within the minimal supersymmetric standard model including flavour changing gluino-quarks-scalar quarks couplings in the right-handed sector. We compare the results with the ones presented in an earlier paper where we considered flavour changing couplings only in the left-handed sector. We show that these new couplings have important consequences leading to a large enhancement when the mixing of the scalar partners of the left- and right-handed top quark is included. Furthermore CP violation in the flavour changing top quark decay will occur when a SUSY phase is taken into account.Comment: 14 pages, latex, 3 figure
    • 

    corecore