research

Criticality and Continuity of Explosive Site Percolation in Random Networks

Abstract

This Letter studies the critical point as well as the discontinuity of a class of explosive site percolation in Erd\"{o}s and R\'{e}nyi (ER) random network. The class of the percolation is implemented by introducing a best-of-m rule. Two major results are found: i). For any specific mm, the critical percolation point scales with the average degree of the network while its exponent associated with mm is bounded by -1 and 0.5\sim-0.5. ii). Discontinuous percolation could occur on sparse networks if and only if mm approaches infinite. These results not only generalize some conclusions of ordinary percolation but also provide new insights to the network robustness.Comment: 5 pages, 5 figure

    Similar works