4 research outputs found

    Viral vector‐based cancer treatment and current clinical applications

    No full text
    Abstract Owing to the limitations of conventional cancer therapies, including chemotherapy, radiotherapy, and surgery, gene therapy has become a prominent strategy for cancer treatment over the past few decades. Gene therapy is a medical approach for targeting and destroying cancer cells by delivering exogenous genes into the target cancerous cells or surrounding tissues. However, successful delivery of foreign genes into target cells and tissues remains a key issue in such therapy. Efficient gene delivery systems would undoubtedly be important for improving the medical outcomes of gene therapy. With genetic modifications, viral vectors can target specific cells with high gene transduction efficiency, thus, the use of viral vectors is a promising technology for improving foreign gene delivery. Currently, four viral vectors—adenovirus, adeno‐associated virus, herpes simplex virus, and retrovirus—are dominantly being investigated and used in preclinical and clinical trials. In this review, we provide an overview of the mechanisms and latest applications of the four above‐mentioned viral vectors, and summarize the current development of several other viral vectors. In addition, we discuss the challenges and provide insights into future development of viral vectors in cancer treatment

    The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation.

    Get PDF
    The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2
    corecore