66,213 research outputs found

    Dynamics of Scalar Field in Polymer-like Representation

    Full text link
    In recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. We consider the quantum dynamics of a real massless scalar field coupled to gravity in this framework. A Hamiltonian operator for the scalar field can be well defined in the coupled diffeomorphism invariant Hilbert space, which is both self-adjoint and positive. On the other hand, the Hamiltonian constraint operator for the scalar field coupled to gravity can be well defined in the coupled kinematical Hilbert space. There are 1-parameter ambiguities due to scalar field in the construction of both operators. The results heighten our confidence that there is no divergence within this background independent and diffeomorphism invariant quantization approach of matter coupled to gravity. Moreover, to avoid possible quantum anomaly, the master constraint programme can be carried out in this coupled system by employing a self-adjoint master constraint operator on the diffeomorphism invariant Hilbert space.Comment: 24 pages, accepted for pubilcation in Class. Quant. Gra

    Astrometric Method to Break the Photometric Degeneracy between Binary-source and Planetary Microlensing Perturbations

    Get PDF
    An extra-solar planet can be detected by microlensing because the planet can perturb the smooth lensing light curve created by the primary lens. However, it was shown by Gaudi that a subset of binary-source events can produce light curves that closely resemble those produced by a significant fraction of planet/star lens systems, causing serious contamination of a sample of suspected planetary systems detected via microlensing. In this paper, we show that if a lensing event is observed astrometrically, one can unambiguously break the photometric degeneracy between binary-source and planetary lensing perturbations. This is possible because while the planet-induced perturbation in the trajectory of the lensed source image centroid shifts points away from the opening of the unperturbed elliptical trajectory, while the perturbation induced by the binary source companion points always towards the opening. Therefore, astrometric microlensing observations by using future high-precision interferometers will be important for solid confirmation of microlensing planet detections.Comment: total 5 pages, including 1 figure and no table, ApJ, submitted, better quality pdf file is avalilable at http://astroph.chungbuk.ac.kr/~cheongho/publication.htm

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Commuting Simplicity and Closure Constraints for 4D Spin Foam Models

    Full text link
    Spin Foam Models are supposed to be discretised path integrals for quantum gravity constructed from the Plebanski-Holst action. The reason for there being several models currently under consideration is that no consensus has been reached for how to implement the simplicity constraints. Indeed, none of these models strictly follows from the original path integral with commuting B fields, rather, by some non standard manipulations one always ends up with non commuting B fields and the simplicity constraints become in fact anomalous which is the source for there being several inequivalent strategies to circumvent the associated problems. In this article, we construct a new Euclidian Spin Foam Model which is constructed by standard methods from the Plebanski-Holst path integral with commuting B fields discretised on a 4D simplicial complex. The resulting model differs from the current ones in several aspects, one of them being that the closure constraint needs special care. Only when dropping the closure constraint by hand and only in the large spin limit can the vertex amplitudes of this model be related to those of the FK Model but even then the face and edge amplitude differ. Curiously, an ad hoc non-commutative deformation of the BIJB^{IJ} variables leads from our new model to the Barrett-Crane Model in the case of Barbero-Immirzi parameter goes to infinity.Comment: 41 pages, 4 figure

    Ferrimagnetic spin-1/2 chain of alternating Ising and Heisenberg spins in arbitrarily oriented magnetic field

    Full text link
    The ferrimagnetic spin-1/2 chain composed of alternating Ising and Heisenberg spins in an arbitrarily oriented magnetic field is exactly solved using the spin-rotation transformation and the transfer-matrix method. It is shown that the low-temperature magnetization process depends basically on a spatial orientation of the magnetic field. A sharp stepwise magnetization curve with a marked intermediate plateau, which emerges for the magnetic field applied along the easy-axis direction of the Ising spins, becomes smoother and the intermediate plateau shrinks if the external field is tilted from the easy-axis direction. The magnetization curve of a polycrystalline system is also calculated by performing powder averaging of the derived magnetization formula. The proposed spin-chain model brings an insight into high-field magnetization data of 3d-4f bimetallic polymeric compound Dy(NO_3)(DMSO)_2Cu(opba)(DMSO)_2, which provides an interesting experimental realization of the ferrimagnetic chain composed of two different but regularly alternating spin-1/2 magnetic ions Dy^{3+} and Cu^{2+} that are reasonably approximated by the notion of Ising and Heisenberg spins, respectively.Comment: 11 pages, 6 figure

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. IV. Radiation reaction for binary systems with spin-spin coupling

    Get PDF
    Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies, including spin-spin effects. In particular we determine the effects of radiation-reaction coupled to spin-spin effects on the two-body equations of motion, and on the evolution of the spins. We find that radiation damping causes a 3.5PN order, spin-spin induced precession of the individual spins. This contrasts with the case of spin-orbit coupling, where there is no effect on the spins at 3.5PN order. Employing the equations of motion and of spin precession, we verify that the loss of total energy and total angular momentum induced by spin-spin effects precisely balances the radiative flux of those quantities calculated by Kidder et al.Comment: 10 pages, coincides with published versio

    Supersymmetric QCD flavor changing top quark decay

    Get PDF
    We present a detailed and complete calculation of the gluino and scalar quarks contribution to the flavour-changing top quark decay into a charm quark and a photon, gluon, or a Z boson within the minimal supersymmetric standard model including flavour changing gluino-quarks-scalar quarks couplings in the right-handed sector. We compare the results with the ones presented in an earlier paper where we considered flavour changing couplings only in the left-handed sector. We show that these new couplings have important consequences leading to a large enhancement when the mixing of the scalar partners of the left- and right-handed top quark is included. Furthermore CP violation in the flavour changing top quark decay will occur when a SUSY phase is taken into account.Comment: 14 pages, latex, 3 figure

    Recoverable Information and Emergent Conservation Laws in Fracton Stabilizer Codes

    Full text link
    We introduce a new quantity, that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information, as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information, and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2Z_2 Gauss-law type constraints, which in turn imply emergent Z2Z_2 conservation laws for point-like quasiparticle excitations of an underlying topologically ordered phase.Comment: Added additional cluster model calculation (SPT example) and a new section discussing the general benefits of recoverable informatio
    corecore