In recent twenty years, loop quantum gravity, a background independent
approach to unify general relativity and quantum mechanics, has been widely
investigated. We consider the quantum dynamics of a real massless scalar field
coupled to gravity in this framework. A Hamiltonian operator for the scalar
field can be well defined in the coupled diffeomorphism invariant Hilbert
space, which is both self-adjoint and positive. On the other hand, the
Hamiltonian constraint operator for the scalar field coupled to gravity can be
well defined in the coupled kinematical Hilbert space. There are 1-parameter
ambiguities due to scalar field in the construction of both operators. The
results heighten our confidence that there is no divergence within this
background independent and diffeomorphism invariant quantization approach of
matter coupled to gravity. Moreover, to avoid possible quantum anomaly, the
master constraint programme can be carried out in this coupled system by
employing a self-adjoint master constraint operator on the diffeomorphism
invariant Hilbert space.Comment: 24 pages, accepted for pubilcation in Class. Quant. Gra