1,492 research outputs found

    The random-field specific heat critical behavior at high magnetic concentration: Fe(0.93)Zn(0.07)F2

    Full text link
    The specific heat critical behavior is measured and analyzed for a single crystal of the random-field Ising system Fe(0.93)Zn(0.07)F2 using pulsed heat and optical birefringence techniques. This high magnetic concentration sample does not exhibit the severe scattering hysteresis at low temperature seen in lower concentration samples and its behavior is therefore that of an equilibrium random-field Ising model system. The equivalence of the behavior observed with pulsed heat techniques and optical birefringence is established. The critical peak appears to be a symmetric, logarithmic divergence, in disagreement with random-field model computer simulations. The random-field specific heat scaling function is determined.Comment: 9 pages, 4 figures, RevTeX, minor revision

    Androgens correlate with increased erythropoiesis in women with congenital adrenal hyperplasia.

    Get PDF
    OBJECTIVE: Hyperandrogenism in congenital adrenal hyperplasia (CAH) provides an in vivo model for exploring the effect of androgens on erythropoiesis in women. We investigated the association of androgens with haemoglobin (Hb) and haematocrit (Hct) in women with CAH. DESIGN: Cross-validation study PATIENTS: Women with CAH from Sheffield Teaching Hospitals, UK (cohort 1, the training set: n=23) and National Institutes of Health, USA (cohort 2, the validation set: n=53). MEASUREMENTS: Androgens, full blood count and basic biochemistry, all measured on the same day. Demographic and anthropometric data. RESULTS: Significant age-adjusted correlations (P<0.001) were observed for Ln testosterone with Hb and Hct in cohorts 1 and 2 (Hb r=0.712 & 0.524 and Hct r=0.705 & 0.466), which remained significant after adjustments for CAH status, glucocorticoid treatment dose and serum creatinine. In the combined cohorts Hb correlated with androstenedione (P=0.002) and 17-hydroxyprogesterone (P=0.008). Hb and Hct were significantly higher in cohort 1 than those in cohort 2, while there were no group differences in androgen levels, glucocorticoid treatment dose or body mass index. In both cohorts, women with Hb and Hct in the highest tertile had significantly higher testosterone levels than women with Hb and Hct in the lowest tertile. CONCLUSIONS: In women with CAH, erythropoiesis may be driven by androgens and could be considered a biomarker for disease control

    Non-Abelian Dark Sectors and Their Collider Signatures

    Get PDF
    Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian "dark" gauge symmetry that is broken at ~ 1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via "lepton jets" which typically contain >2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present decay channels with displaced vertices and multiple leptons with partially correlated impact parameters.Comment: 44 pages, 25 figures, version published in JHE

    Big, Fast Vortices in the d-RVB theory of High Temperature Superconductivity

    Full text link
    The effect of proximity to a Mott insulating phase on the superflow properties of a d-wave superconductor is studied using the slave boson-U(1) gauge theory model. The model has two limits corresponding to superconductivity emerging either out of a 'renormalized fermi liquid' or out of a non-fermi-liquid regime. Three crucial physical parameters are identified: the size of the vortex \textit{as determined from the supercurrent it induces;} the coupling of the superflow to the quasiparticles and the 'nondissipative time derivative' term. As the Mott phase is approached, the core size as defined from the supercurrent diverges, the coupling between superflow and quasiparticles vanishes, and the magnitude of the nondissipative time derivative dramatically increases. The dissipation due to a moving vortex is found to vary as the third power of the doping. The upper critical field and the size of the critical regime in which paraconductivity may be observed are estimated, and found to be controlled by the supercurrent length scale

    Cryogenic Characterization of Commercial SiC Power MOSFETs

    Full text link
    The cryogenic performance of two commercially available SiC power MOSFETs are presented in this work. The devices are characterised in static and dynamic tests at 10 K intervals from 20-320 K. Static current-voltage characterisation indicates that at low temperatures threshold voltage, turn-on voltage, on-state resistance, transconductance, and the body diode turn-on voltage all increase while saturation current decreases. Dynamic, 60 V, 3A switching tests within the cryogenic chamber are also reported and the trends of switching speed, losses, and total power losses, which rise at low temperature, are presented. Overall, both MOSFETs are fully operable down to 20 K with both positive and negative changes in behaviour.</p

    Abelian Hidden Sectors at a GeV

    Get PDF
    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1)_x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.Comment: 43 pages, no figures; v2: to match JHEP versio

    Pulsars as the Source of the WMAP Haze

    Full text link
    The WMAP haze is an excess in the 22 to 93 GHz frequency bands of WMAP extending about 10 degrees from the galactic center. We show that synchrotron emission from electron-positron pairs injected into the interstellar medium by the galactic population of pulsars with energies in the 1 to 100 GeV range can explain the frequency spectrum of the WMAP haze and the drop in the average haze power with latitude. The same spectrum of high energy electron-positron pairs from pulsars, which gives rise to the haze, may also generate the observed excesses in AMS, HEAT and PAMELA. We discuss the spatial morphology of the pulsar synchrotron signal and its deviation from spherical symmetry, which may provide an avenue to determine the pulsar contribution to the haze.Comment: 18 pages, 4 figures. Corrected errors in fig 1-3 and added discussion of the detailed spatial morphology of the haze signa

    Charged Higgs Boson Production in Bottom-Gluon Fusion

    Full text link
    We compute the complete next-to-leading order SUSY-QCD corrections for the associated production of a charged Higgs boson with a top quark via bottom-gluon fusion. We investigate the applicability of the bottom parton description in detail. The higher order corrections can be split into real and virtual corrections for a general two Higgs doublet model and into additional massive supersymmetric loop contributions. We find that the perturbative behavior is well under control. The supersymmetric contributions consist of the universal bottom Yukawa coupling corrections and non-factorizable diagrams. Over most of the relevant supersymmetric parameter space the Yukawa coupling corrections are sizeable, while the remaining supersymmetric loop contributions are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria
    corecore