6 research outputs found

    Developing Fine-Grained Actigraphies for Rheumatoid Arthritis Patients from a Single Accelerometer Using Machine Learning

    Get PDF
    In addition to routine clinical examination, unobtrusive and physical monitoring of Rheumatoid Arthritis (RA) patients provides an important source of information to enable understanding the impact of the disease on quality of life. Besides an increase in sedentary behaviour, pain in RA can negatively impact simple physical activities such as getting out of bed and standing up from a chair. The objective of this work is to develop a method that can generate fine-grained actigraphies to capture the impact of the disease on the daily activities of patients. A processing methodology is presented to automatically tag activity accelerometer data from a cohort of moderate-to-severe RA patients. A study of procesing methods based on machine learning and deep learning is provided. Thirty subjects, 10 RA patients and 20 healthy control subjects, were recruited in the study. A single tri-axial accelerometer was attached to the position of the fifth lumbar vertebra (L5) of each subject with a tag prediction granularity of 3 s. The proposed method is capable of handling unbalanced datasets from tagged data while accounting for long-duration activities such as sitting and lying, as well as short transitions such as sit-to-stand or lying-to-sit. The methodology also includes a novel mechanism for automatically applying a threshold to predictions by their confidence levels, in addition to a logical filter to correct for infeasible sequences of activities. Performance tests showed that the method was able to achieve around 95% accuracy and 81% F-score. The produced actigraphies can be helpful to generate objective RA disease-specific markers of patient mobility in-between clinical site visits

    Colon wall motility: comparison of novel quantitative semi-automatic measurements using cine MRI

    No full text
    Background Recently, cine magnetic resonance imaging (MRI) has shown promise for visualizing movement of the colonic wall, although assessment of data has been subjective and observer dependent. This study aimed to develop an objective and semi-automatic imaging metric of ascending colonic wall movement, using image registration techniques. Methods Cine balanced turbo field echo MRI images of ascending colonic motility were acquired over 2 min from 23 healthy volunteers (HVs) at baseline and following two different macrogol stimulus drinks (11 HVs drank 1 L and 12 HVs drank 2 L). Motility metrics derived from large scale geometric and small scale pixel movement parameters following image registration were developed using the post ingestion data and compared to observer grading of wall motion. Inter and intra-observer variability in the highest correlating metric was assessed using Bland–Altman analysis calculated from two separate observations on a subset of data. Key Results All the metrics tested showed significant correlation with the observer rating scores. Line analysis (LA) produced the highest correlation coefficient of 0.74 (95% CI: 0.55–0.86), p < 0.001 (Spearman Rho). Bland–Altman analysis of the inter- and intra-observer variability for the LA metric, showed almost zero bias and small limits of agreement between observations (−0.039 to 0.052 intra-observer and −0.051 to 0.054 inter-observer, range of measurement 0–0.353). Conclusions & Inferences The LA index of colonic motility derived from cine MRI registered data provides a quick, accurate and non-invasive method to detect wall motion within the ascending colon following a colonic stimulus in the form of a macrogol drink

    Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis

    No full text
    Abstract Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients’ Apple smartwatch continuously over the study duration. We subsequently developed a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features (F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r 2, 0.692; RMSE, 1.33). The ability to measure the impact of the disease during daily life—through objective and remote digital outcomes—paves the way forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials

    Patient-centric assessment of rheumatoid arthritis using a smartwatch and bespoke mobile app in a clinical setting

    No full text
    Abstract Rheumatoid arthritis (RA) is a fluctuating progressive disease requiring frequent symptom assessment for appropriate management. Continuous tracking using digital technologies may provide greater insights of a patient’s experience. This prospective study assessed the feasibility, reliability, and clinical utility of using novel digital technologies to remotely monitor participants with RA. Participants with moderate to severe RA and non-RA controls were monitored continuously for 14 days using an iPhone with an integrated bespoke application and an Apple Watch. Participants completed patient-reported outcome measures and objective guided tests designed to assess disease-related impact on physical function. The study was completed by 28 participants with RA, 28 matched controls, and 2 unmatched controls. Completion rates for all assessments were > 97% and were reproducible over time. Several guided tests distinguished between RA and control cohorts (e.g., mean lie-to-stand time [seconds]: RA: 4.77, control: 3.25; P < 0.001). Participants with RA reporting greater stiffness, pain, and fatigue had worse guided test performances (e.g., wrist movement [P < 0.001] and sit-to-stand transition time [P = 0.009]) compared with those reporting lower stiffness, pain, and fatigue. This study demonstrates that digital technologies can be used in a well-controlled, remote clinical setting to assess the daily impact of RA
    corecore