1,946 research outputs found

    Space shuttle main engine hardware simulation

    Get PDF
    The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME

    Improved diamond coring bits developed for dry and chip-flush drilling

    Get PDF
    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry

    Report of W.H. Gibbes Chief Game Warden of the state of South Carolina

    Get PDF
    The Chief Game Warden of the State of South Carolina submitted an annual report to the Governor and General Assembly with recommendations, statistics on expenditures and licenses sold, appropriations, and list of wardens and acting wardens in each county

    Residual Strength Predictions with Crack Buckling

    Get PDF
    Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%

    Feature integration in natural language concepts

    Get PDF
    Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts

    Farm-Tractor-Related Fatalities -- Kentucky, 1994

    Get PDF
    Fatalities associated with farm tractors are the most common cause of work-related death in the U.S. agricultural industry (1). To characterize farm-tractor-related fatalities in Kentucky, the Kentucky Fatality Assessment and Control Evaluation (KY FACE) Project studied all fatal farm injuries occurring among persons in that state during 1994, the initial year of operation for FACE in Kentucky. This report summarizes the results of that study

    Identification of Differential Gene Expression in Brassica rapa Nectaries through Expressed Sequence Tag Analysis

    Get PDF
    BACKGROUND: Nectaries are the floral organs responsible for the synthesis and secretion of nectar. Despite their central roles in pollination biology, very little is understood about the molecular mechanisms underlying nectar production. This project was undertaken to identify genes potentially involved in mediating nectary form and function in Brassica rapa. METHODOLOGY AND PRINCIPAL FINDINGS: Four cDNA libraries were created using RNA isolated from the median and lateral nectaries of B. rapa flowers, with one normalized and one non-normalized library being generated from each tissue. Approximately 3,000 clones from each library were randomly sequenced from the 5' end to generate a total of 11,101 high quality expressed sequence tags (ESTs). Sequence assembly of all ESTs together allowed the identification of 1,453 contigs and 4,403 singleton sequences, with the Basic Localized Alignment Search Tool (BLAST) being used to identify 4,138 presumptive orthologs to Arabidopsis thaliana genes. Several genes differentially expressed between median and lateral nectaries were initially identified based upon the number of BLAST hits represented by independent ESTs, and later confirmed via reverse transcription polymerase chain reaction (RT PCR). RT PCR was also used to verify the expression patterns of eight putative orthologs to known Arabidopsis nectary-enriched genes. CONCLUSIONS/SIGNIFICANCE: This work provided a snapshot of gene expression in actively secreting B. rapa nectaries, and also allowed the identification of differential gene expression between median and lateral nectaries. Moreover, 207 orthologs to known nectary-enriched genes from Arabidopsis were identified through this analysis. The results suggest that genes involved in nectar production are conserved amongst the Brassicaceae, and also supply clones and sequence information that can be used to probe nectary function in B. rapa

    Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species <it>Daphnia pulex</it>, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant.</p> <p>Results</p> <p>Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the <it>Daphnia </it>genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of <it>D. pulex </it>MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs.</p> <p>Conclusion</p> <p>The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in <it>Daphnia </it>genomics will enable the further development of this species as a model organism for the environmental sciences.</p

    Gradient Clogging in Depth Filtration

    Full text link
    We investigate clogging in depth filtration, in which a dirty fluid is ``cleaned'' by the trapping of dirt particles within the pore space during flow through a porous medium. This leads to a gradient percolation process which exhibits a power law distribution for the density of trapped particles at downstream distance x from the input. To achieve a non-pathological clogging (percolation) threshold, the system length L should scale no faster than a power of ln w, where w is the width. Non-trivial behavior for the permeability arises only in this extreme anisotropic geometry.Comment: 4 pages, 3 figures, RevTe
    • …
    corecore