3,313 research outputs found

    Reusable rocket engine turbopump condition monitoring

    Get PDF
    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors

    Present state of knowledge of the upper atmosphere: An assessment report; processes that control ozone and other climatically important trace gases

    Get PDF
    The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16

    Transmission dynamics and prospects for the elimination of canine rabies

    Get PDF
    Rabies has been eliminated from domestic dog populations in Western Europe and North America, but continues to kill many thousands of people throughout Africa and Asia every year. A quantitative understanding of transmission dynamics in domestic dog populations provides critical information to assess whether global elimination of canine rabies is possible. We report extensive observations of individual rabid animals in Tanzania and generate a uniquely detailed analysis of transmission biology, which explains important epidemiological features, including the level of variation in epidemic trajectories. We found that the basic reproductive number for rabies, R<sub>0</sub>, is very low in our study area in rural Africa (∼1.2) and throughout its historic global range (<2). This finding provides strong support for the feasibility of controlling endemic canine rabies by vaccination, even near wildlife areas with large wild carnivore populations. However, we show that rapid turnover of domestic dog populations has been a major obstacle to successful control in developing countries, thus regular pulse vaccinations will be required to maintain population-level immunity between campaigns. Nonetheless our analyses suggest that with sustained, international commitment, global elimination of rabies from domestic dog populations, the most dangerous vector to humans, is a realistic goal

    Time-Varying Sliding Mode Control for ABS Control of an Electric Car

    Get PDF
    Controller design for the Anti-Lock Braking System (ABS) of a wheeled vehicle is a challenging task because of the complex and nonlinear nature of the tyre-road interaction. An efficient ABS controller should be capable of maintaining the wheel slip at an optimal value, which is suitable for the particular road conditions experienced at a given instant in time, preventing the wheel from locking while braking. Many controller designs in the literature track either an optimal slip which is assumed constant or are not supported by experimental validation or simulation testing with higher order models. This paper first presents an ABS system based on a conventional Sliding Mode Control (SMC). The performance of this controller is tested on an experimental vehicle. The results are compared with simulation results obtained with both a quarter car model and a full-car model built in the Matlab/Simulink environment. The performance of this controller is improved by effective state estimation using a Sliding Mode Differentiator (SMD) where the results are benchmarked with an implementation using an Extended Kalman Filter (EKF). The paper then presents a controller based on Time-Varying Sliding Mode Control (TV-SMC) which tracks an optimal slip trajectory

    Response to a rabies epidemic in Bali, Indonesia

    Get PDF
    Emergency vaccinations and culling failed to contain an outbreak of rabies in Bali, Indonesia, during 2008ā€“2009. Subsequent island-wide mass vaccination (reaching 70% coverage, >200,000 dogs) led to substantial declines in rabies incidence and spread. However, the incidence of dog bites remains high, and repeat campaigns are necessary to eliminate rabies in Bali

    Quantitative characterisation of deltaic and subaqueous clinoforms

    Get PDF
    AbstractClinoforms are ubiquitous deltaic, shallow-marine and continental-margin depositional morphologies, occurring over a range of spatial scales (1ā€“104m in height). Up to four types of progressively larger-scale clinoforms may prograde synchronously along shoreline-to-abyssal plain transects, albeit at very different rates. Paired subaerial and subaqueous delta clinoforms (or ā€˜delta-scale compound clinoformsā€™), in particular, constitute a hitherto overlooked depositional model for ancient shallow-marine sandbodies. The topset-to-foreset rollovers of subaqueous deltas are developed at up to 60m water depths, such that ancient delta-scale clinoforms should not be assumed to record the position of ancient shorelines, even if they are sandstone-rich.This study analyses a large dataset of modern and ancient delta-scale, shelf-prism- and continental-margin-scale clinoforms, in order to characterise diagnostic features of different clinoform systems, and particularly of delta-scale subaqueous clinoforms. Such diagnostic criteria allow different clinoform types and their dominant grain-size characteristics to be interpreted in seismic reflection and/or sedimentological data, and prove that all clinoforms are subject to similar physical laws.The examined dataset demonstrates that progressively larger scale clinoforms are deposited in increasingly deeper waters, over progressively larger time spans. Consequently, depositional flux, sedimentation and progradation rates of continental-margin clinoforms are up to 4ā€“6 orders of magnitude lower than those of deltas. For all clinoform types, due to strong statistical correlations between these parameters, it is now possible to calculate clinoform paleobathymetries once clinoform heights, age spans or progradation rates have been constrained.Muddy and sandy delta-scale subaqueous clinoforms show many different features, but all share four characteristics. (1) They are formed during relative sea-level stillstands (e.g., Late Holocene); (2) their stratigraphic architecture and facies character are dominated by basinal processes, and are quite uniform; (3) their plan-view morphology is shore-parallel and laterally extensive; (4) their sigmoidal cross-sectional geometry contrasts with the oblique profiles of most subaerial deltas. Holocene-age, delta-scale, sand-prone subaqueous clinoforms occur on steep (ā‰„0.26Ā°) and narrow (5ā€“32km) shelves, at typical distances of 0.6ā€“7.2km from the shoreline break. That contrasts with mud-prone subaqueous deltas, which form clinoforms on gently-sloping (0.01ā€“0.38Ā°), wide (23ā€“376km) shelves, at usual distances of 7.5ā€“125km from the shoreline. Delta-scale sand-prone subaqueous clinoforms have diagnostically steep foresets (0.7ā€“23Ā°). Similarly steep gradients were observed in much larger shelf-prism- and continental-margin-scale clinoforms. Gentler foreset gradients are shown by sand-prone subaerial deltas (0.1ā€“2.7Ā°), and mud-prone subaqueous and subaerial deltas (0.03ā€“1.50Ā°). Due to the lack of connections with river mouths, Holocene delta-scale sand-prone subaqueous clinoform deposits have progradation rates (1ā€“5Ɨ102km/Myr) and unit-width depositional flux (1ā€“15km2/Myr) that are up to 3ā€“4 and 2ā€“3 orders of magnitude lower, respectively, than age-equivalent input-dominated subaerial deltas and muddy subaqueous deltas. Lower progradation/aggradation ratios are reflected in a larger spread of clinoform trajectory angles (from āˆ’0.4Ā° to +3.5Ā°) than the very low values displayed by age-equivalent subaerial and muddy subaqueous deltas.As slowly prograding, steep, sigmoidal clinoforms are strongly suggestive of sand-prone subaqueous deltas, the Sognefjord Formation and Bridport Sand are likely Jurassic examples of this clinoform type, and host hydrocarbon reservoirs. In contrast, the Campanian Blackhawk Formation is an outcrop example of delta-scale compound clinoforms with a muddy subaqueous component

    Preserved stratigraphic architecture and evolution of a net-transgressive mixed wave- and tide-influenced coastal system: Cliff House Sandstone, northwestern New Mexico, USA

    Get PDF
    The Cretaceous Cliff House Sandstone comprises a thick (400 m) net- transgressive succession representing a mixed wave- and tide-influenced shallow-marine system that migrated episodically landwards. This study examines the youngest part (middle Campanian) of the Cliff House Sandstone, exposed in Chaco Cultural Natural Historical Park, northwest New Mexico, U.S. A. Detailed mapping of facies architecture between a three-dimensional network of measured sections has allowed the character, geometry, and distribution of key stratigraphic surfaces and stratal units to be reconstructed. Upward-shallowing facies successions (parasequences) are separated by laterally extensive transgressive erosion (ravinement) surfaces cut by both wave and tide processes. Preservation of facies tracts in each parasequence is controlled by the depth of erosion and migration trajectory of the overlying ravinement surfaces. In most parasequences, there is no preservation of the proximal wave-dominated facies tracts (foreshore, upper-shoreface), resulting in thin (4ā€“7 m) top-truncated packages. Four distinct shallow marine tongues (parasequence sets) have been identified, consisting of ten parasequences with a total stratigraphic thickness of ~ 100 m. Each tongue records an episode of complex shoreline migration history (multiple regressiveā€“transgressive phases) in an overall net-transgressive system. The ravinement surfaces provide a stratigraphic framework in which to understand partitioning of tide- and wave-dominated deposits in a net-transgressive system, and a model is presented to account for the sediment distribution and stratigraphic architecture observed in each parasequence. Despite a complex internal architecture, parasequences exhibit a predictable pattern which can be related to the regressive and transgressive phases of deposition. Preservation of wave-dominated facies tracts is associated with shoreline regression, while tide-dominated facies tracts are interpreted to record sediment accumulation during shoreline transgression that also resulted in significant erosion of the underlying regressive deposits. The interplay between erosion, sediment bypass, and deposition during regression and transgression is shown to ultimately control the preservation and stratigraphic architecture of the larger-scale net-transgressive coastal system. While the Cliff House Sandstone exhibits a facies composition and quantitative stacking patterns (shoreline trajectory) similar to other studied examples, differences in the dip-extent of the wave-dominated sandstone tongue has resulted in a more disconnected architecture between the high-fr equency cycles. Understanding the variety of stratal geometries that ravinement surfaces can generate is therefore crucial to predicting the spatial distribution and facies architecture in transgressive systems
    • ā€¦
    corecore