83 research outputs found

    A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2

    Get PDF
    Key points: • Autosomal recessive primary microcephaly (MCPH) is a genetic disorder in which an affected subject is born with a head circumference >3 SD below the expected mean and is mentally retarded. • We report a novel locus (MCPH6) mapped to chromosome 13q12.2 in a Brazilian family. • The minimal critical region spans 6 Mb between markers AL139378GT17 and D13S1244 with a maximum two point lod score of 6.25

    Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36

    Get PDF
    Kufor-Rakeb syndrome is an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration. The onset is in the teenage years with clinical features of Parkinson’s disease plus spasticity, supranuclear upgaze paresis, and dementia. Brain scans show atrophy of the globus pallidus and pyramids and, later, widespread cerebral atrophy. We report linkage in Kufor- Rakeb syndrome to a 9 cM region of chromosome 1p36 delineated by the markers D1S436 and D1S2843, with a maximum multipoint lod score of 3.6. (J Med Genet 2001;38:680–682

    Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation

    Get PDF
    BACKGROUND AND OBJECTIVES: Locus heterogeneity is well established in autosomal recessive primary microcephaly (MCPH) and to date five loci have been mapped. However, the relative contributions of these loci have not been assessed and genotype-phenotype correlations have not been investigated. DESIGN: A study population of 56 consanguineous families resident in or originating from northern Pakistan was ascertained and assessed by the authors. A panel of microsatellite markers spanning each of the MCPH loci was designed, against which the families were genotyped. RESULTS: The head circumference of the 131 affected subjects ranged from 4 to 14 SD below the mean, but there was little intrafamilial variation among affecteds (± 1 SD). MCPH5 was the most prevalent, with 24/56 families consistent with linkage; 2/56 families were compatible with linkage to MCPH1, 10/56 to MCPH2, 2/56 to MCPH3, none to MCPH4, and 18/56 did not segregate with any of the loci. CONCLUSIONS: MCPH5 is the most common locus in this population. On clinical grounds alone, the phenotype of families linked to each MCPH locus could not be distinguished. We have also shown that further MCPH loci await discovery with a number of families as yet unlinked

    Innovative solutions to novel drug development in mental health

    Get PDF
    There are many new advances in neuroscience and mental health which should lead to a greater understanding of the neurobiological dysfunction in neuropsychiatric disorders and new developments for early, effective treatments. To do this, a biomarker approach combining genetic, neuroimaging, cognitive and other biological measures is needed. The aim of this article is to highlight novel approaches for pharmacological and non-pharmacological treatment development. This article suggests approaches that can be taken in the future including novel mechanisms with preliminary clinical validation to provide a toolbox for mechanistic studies and also examples of translation and back-translation. The review also emphasizes the need for clinician-scientists to be trained in a novel way in order to equip them with the conceptual and experimental techniques required, and emphasizes the need for private-public partnership and pre-competitive knowledge exchange. This should lead the way for important new holistic treatment developments to improve cognition, functional outcome and well-being of people with neuropsychiatric disorders

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Measurement of the VH,H → ττ process with the ATLAS detector at 13 TeV

    Get PDF
    A measurement of the Standard Model Higgs boson produced in association with a W or Z boson and decaying into a pair of τ-leptons is presented. This search is based on proton-proton collision data collected at √s = 13 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 140 fb−1. For the Higgs boson candidate, only final states with at least one τ-lepton decaying hadronically (τ →hadrons + vτ ) are considered. For the vector bosons, only leptonic decay channels are considered: Z → ℓℓ and W → ℓvℓ, with ℓ = e, μ. An excess of events over the expected background is found with an observed (expected) significance of 4.2 (3.6) standard deviations, providing evidence of the Higgs boson produced in association with a vector boson and decaying into a pair of τ-leptons. The ratio of the measured cross-section to the Standard Model prediction is μττ VH = 1.28 +0.30 −0.29 (stat.) +0.25 −0.21 (syst.). This result represents the most accurate measurement of the VH(ττ) process achieved to date

    Measurement of diferential cross-sections in tt¯ and tt¯+jets production in the lepton+jets fnal state in pp collisions at √s = 13 TeV using 140 fb−1 of ATLAS data

    Get PDF
    Diferential cross-sections for top-quark pair production, inclusively and in association with jets, are measured in pp collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 140 fb−1. The events are selected with one charged lepton (electron or muon) and at least four jets. The differential cross-sections are presented at particle level as functions of several jet observables, including angular correlations, jet transverse momenta and invariant masses of the jets in the final state, which characterise the kinematics and dynamics of the top-antitop system and the hard QCD radiation in the system with associated jets. The typical precision is 5%–15% for the absolute differential cross-sections and 2%–4% for the normalised differential cross-sections. Next-to-leading-order and next-to-next-to-leading-order QCD predictions are found to provide an adequate description of the rate and shape of the jet-angular observables. The description of the transverse momentum and invariant mass observables is improved when next-to-next-to-leading-order QCD corrections are included
    corecore