151 research outputs found

    A Pipeline Analog-To-Digital Converter for a Plasma Impedance Probe

    Get PDF
    Space instrumentation technology is an essential tool for rocket and satellite research, and is expected to become popular in commercial and military operations in fields such as radar, imaging, and communications. These instruments are traditionally implemented on printed circuit boards using discrete general-purpose Analog-to-Digital Converter (ADC) devices and other components. A large circuit board is not convenient for use in micro-satellite deployments, where the total payload volume is limited to roughly one cubic foot. Because micro-satellites represent a fast growing trend in satellite research and development, there is motivation to explore miniaturized custom application-specific integrated circuit (ASIC) designs to reduce the volume and power consumption occupied by instrument electronics. In this thesis, a model of a new Plasma Impedance Probe (PIP) architecture, which utilizes a custom-built ADC along with other analog and digital components, is proposed. The model can be fully integrated to produce a low-power, miniaturized impedance probe

    Osteochondral transfer using a transmalleolar approach for arthroscopic management of talus posteromedial lesions

    Get PDF
    SummaryCharacterizing osteochondral lesions of the talus has enabled the strategies of surgical management to be better specified. The main technical problem is one of access for arthroscopy instruments to posteromedial lesions. A range of techniques and approaches has been described in ankle arthroscopy in general, and a transmalleolar approach provides reliable and efficient access in these cases. It is frequently used for transchondral drilling, but also enables satisfactory implant positioning in autologous osteochondral mosaicplasty procedures. We report our technique and results on five cases with a minimum 1.2 years’ follow-up

    Evaluation of Anisotropic Conductive Films Based on Vertical Fibers for Post-CMOS Wafer-Level Packaging

    Get PDF
    In this paper, we investigate the mechanical and electrical properties of an anisotropic conductive film (ACF) on the basis of high-density vertical fibers for a wafer-level packaging (WLP) application. As part of the WaferBoard, a\ud reconfigurable circuit platform for rapid system prototyping,\ud ACF is used as an intermediate film providing compliant and\ud vertical electrical connection between chip contacts and a top surface of an active wafer-size large-area IC. The chosen ACF is first tested by an indentation technique. The results show that the elastic–plastic deformation mode as well as the Young’s modulus and the hardness depend on the indentation depth. Second, the efficiency of the electrical contact is tested using a uniaxial compression on a stack comprising a dummy ball grid array (BGA) board, an ACF, and a thin Al film. For three bump diameters, as the compression increases, the resistance values decrease before reaching low and stable values. Despite the BGA solder bumps exhibit plastic deformation after compression, no damage is found on the ACF film. These results show that vertical fiber ACFs can be used for nonpermanent bonding in a WLP application

    2019 ESC/EAS guidelines for the management of dyslipidaemias : Lipid modification to reduce cardiovascular risk

    Get PDF
    Correction: Volume: 292 Pages: 160-162 DOI: 10.1016/j.atherosclerosis.2019.11.020 Published: JAN 2020Peer reviewe

    A pipeline analog-to-digital converter for a plasma impedance probe

    No full text
    Space instrumentation technology is an essential tool for rocket and satellite research, and is expected to become popular in commercial and military operations in fields such as radar, imaging, and communications. These instruments are traditionally implemented on printed circuit boards using discrete general-purpose Analog-to-Digital Converter (ADC) devices and other components. A large circuit board is not convenient for use in micro-satellite deployments, where the total payload volume is limited to roughly one cubic foot. Because micro-satellites represent a fast growing trend in satellite research and development, there is motivation to explore miniaturized custom application-specific integrated circuit (ASIC) designs to reduce the volume and power consumption occupied by instrument electronics. In this thesis, a model of a new Plasma Impedance Probe (PIP) architecture, which utilizes a custom-built ADC along with other analog and digital components, is proposed. The model can be fully integrated to produce a low-power, miniaturized impedance probe
    • …
    corecore