13,014 research outputs found
Tensor-Scalar Torsion
A theory of gravity with torsion is examined in which the torsion tensor is
constructed from the exterior derivative of an antisymmetric rank two potential
plus the dual of the gradient of a scalar field. Field equations for the theory
are derived by demanding that the action be stationary under variations with
respect to the metric, the antisymmetric potential, and the scalar field. A
material action is introduced and the equations of motion are derived. The
correct conservation law for rotational angular momentum plus spin is observed
to hold in this theory.Comment: 10 pages, LaTeX, Mod. Phys. Lett. A accepte
Ride quality systems for commuter aircraft
The state-of-the-art in Active Ride Augmentation, specifically in terms of its feasibility for commuter aircraft applications. A literature survey was done, and the principal results are presented here through discussion of different Ride Quality Augmentation System (RQAS) designs and advances in related technologies. Recommended follow-on research areas are discussed, and a preliminary RQAS configuration for detailed design and development is proposed
Covariance analysis of the airborne laser ranging system
The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases
Advocacy Journalism, the Politics of Humanitarian Intervention and the Syrian War
Since 2011, the international media have done much to highlight the suffering of civilians in the on-going war in Syria, through innovative forms of reporting such as VR journalism and news games. However, by the end of 2016, questions were being raised about a number of high-profile news stories, such as the use of chemical weapons, the role of the ‘White Helmets’ relief workers and the bombing of Aleppo and other cities. Amid the claims and counter- claims of propaganda and ‘fake news’, news audiences glimpsed shifting and clashing explanatory framings of the Syrian war. A conflict that had initially been understood against the background of the ‘Arab Spring’ began to be seen as complicated by sectarian religious tensions, the rise of Islamic State, opaque factional and regional alliances, and international tensions reminiscent of the Cold War. An imperative to establish a moral framework for the story seemed to preclude more complex and searching questions about the motivations and actions of local and international actors
Experimental and numerical study of error fields in the CNT stellarator
Sources of error fields were indirectly inferred in a stellarator by
reconciling computed and numerical flux surfaces. Sources considered so far
include the displacements and tilts (but not the deformations, yet) of the four
circular coils featured in the simple CNT stellarator. The flux surfaces were
measured by means of an electron beam and phosphor rod, and were computed by
means of a Biot-Savart field-line tracing code. If the ideal coil locations and
orientations are used in the computation, agreement with measurements is poor.
Discrepancies are ascribed to errors in the positioning and orientation of the
in-vessel interlocked coils. To that end, an iterative numerical method was
developed. A Newton-Raphson algorithm searches for the coils' displacements and
tilts that minimize the discrepancy between the measured and computed flux
surfaces. This method was verified by misplacing and tilting the coils in a
numerical model of CNT, calculating the flux surfaces that they generated, and
testing the algorithm's ability to deduce the coils' displacements and tilts.
Subsequently, the numerical method was applied to the experimental data,
arriving at a set of coil displacements whose resulting field errors exhibited
significantly improved quantitative and qualitative agreement with experimental
results.Comment: Special Issue on the 20th International Stellarator-Heliotron
Worksho
Fermion Helicity Flip Induced by Torsion Field
We show that in theories of gravitation with torsion the helicity of fermion
particles is not conserved and we calculate the probability of spin flip, which
is related to the anti-symmetric part of affine connection. Some cosmological
consequences are discussed.Comment: 6 pages, to appear in Europhysics Letter
Design of a digital ride quality augmentation system for commuter aircraft
Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs
Common Graphics Library (CGL). Volume 1: LEZ user's guide
Users are introduced to and instructed in the use of the Langley Easy (LEZ) routines of the Common Graphics Library (CGL). The LEZ routines form an application independent graphics package which enables the user community to view data quickly and easily, while providing a means of generating scientific charts conforming to the publication and/or viewgraph process. A distinct advantage for using the LEZ routines is that the underlying graphics package may be replaced or modified without requiring the users to change their application programs. The library is written in ANSI FORTRAN 77, and currently uses a CORE-based underlying graphics package, and is therefore machine independent, providing support for centralized and/or distributed computer systems
Recommended from our members
Optimising the analysis of transcript data using high density oligonucleotide arrays and genomic DNA-based probe selection
Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe-set, consisting of up to 16 probe-pairs. Signal intensities across probe-pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We
have previously developed a technique to study the transcriptomes of heterologous species based
on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology.
Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation
intensity increased the number of genes identified as significantly differentially expressed in two
published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice.
Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays
- …