3,526 research outputs found

    Asymptotic Expansions for lambda_d of the Dimer and Monomer-Dimer Problems

    Full text link
    In the past few years we have derived asymptotic expansions for lambda_d of the dimer problem and lambda_d(p) of the monomer-dimer problem. The many expansions so far computed are collected herein. We shine a light on results in two dimensions inspired by the work of M. E. Fisher. Much of the work reported here was joint with Shmuel Friedland.Comment: 4 page

    Exact asymptotics of monomer-dimer model on rectangular semi-infinite lattices

    Full text link
    By using the asymptotic theory of Pemantle and Wilson, exact asymptotic expansions of the free energy of the monomer-dimer model on rectangular n×n \times \infty lattices in terms of dimer density are obtained for small values of nn, at both high and low dimer density limits. In the high dimer density limit, the theoretical results confirm the dependence of the free energy on the parity of nn, a result obtained previously by computational methods. In the low dimer density limit, the free energy on a cylinder n×n \times \infty lattice strip has exactly the same first nn terms in the series expansion as that of infinite ×\infty \times \infty lattice.Comment: 9 pages, 6 table

    Complementary algorithms for graphs and percolation

    Full text link
    A pair of complementary algorithms are presented. One of the pair is a fast method for connecting graphs with an edge. The other is a fast method for removing edges from a graph. Both algorithms employ the same tree based graph representation and so, in concert, can arbitrarily modify any graph. Since the clusters of a percolation model may be described as simple connected graphs, an efficient Monte Carlo scheme can be constructed that uses the algorithms to sweep the occupation probability back and forth between two turning points. This approach concentrates computational sampling time within a region of interest. A high precision value of pc = 0.59274603(9) was thus obtained, by Mersenne twister, for the two dimensional square site percolation threshold.Comment: 5 pages, 3 figures, poster version presented at statphys23 (2007

    Enumeration of self avoiding trails on a square lattice using a transfer matrix technique

    Full text link
    We describe a new algebraic technique, utilising transfer matrices, for enumerating self-avoiding lattice trails on the square lattice. We have enumerated trails to 31 steps, and find increased evidence that trails are in the self-avoiding walk universality class. Assuming that trails behave like Aλnn1132A \lambda ^n n^{11 \over 32}, we find λ=2.72062±0.000006\lambda = 2.72062 \pm 0.000006 and A=1.272±0.002A = 1.272 \pm 0.002.Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe

    Monomer-dimer model in two-dimensional rectangular lattices with fixed dimer density

    Full text link
    The classical monomer-dimer model in two-dimensional lattices has been shown to belong to the \emph{``#P-complete''} class, which indicates the problem is computationally ``intractable''. We use exact computational method to investigate the number of ways to arrange dimers on m×nm \times n two-dimensional rectangular lattice strips with fixed dimer density ρ\rho. For any dimer density 0<ρ<10 < \rho < 1, we find a logarithmic correction term in the finite-size correction of the free energy per lattice site. The coefficient of the logarithmic correction term is exactly -1/2. This logarithmic correction term is explained by the newly developed asymptotic theory of Pemantle and Wilson. The sequence of the free energy of lattice strips with cylinder boundary condition converges so fast that very accurate free energy f2(ρ)f_2(\rho) for large lattices can be obtained. For example, for a half-filled lattice, f2(1/2)=0.633195588930f_2(1/2) = 0.633195588930, while f2(1/4)=0.4413453753046f_2(1/4) = 0.4413453753046 and f2(3/4)=0.64039026f_2(3/4) = 0.64039026. For ρ<0.65\rho < 0.65, f2(ρ)f_2(\rho) is accurate at least to 10 decimal digits. The function f2(ρ)f_2(\rho) reaches the maximum value f2(ρ)=0.662798972834f_2(\rho^*) = 0.662798972834 at ρ=0.6381231\rho^* = 0.6381231, with 11 correct digits. This is also the \md constant for two-dimensional rectangular lattices. The asymptotic expressions of free energy near close packing are investigated for finite and infinite lattice widths. For lattices with finite width, dependence on the parity of the lattice width is found. For infinite lattices, the data support the functional form obtained previously through series expansions.Comment: 15 pages, 5 figures, 5 table

    Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries

    Full text link
    Using exact computations we study the classical hard-core monomer-dimer models on m x n plane lattice strips with free boundaries. For an arbitrary number v of monomers (or vacancies), we found a logarithmic correction term in the finite-size correction of the free energy. The coefficient of the logarithmic correction term depends on the number of monomers present (v) and the parity of the width n of the lattice strip: the coefficient equals to v when n is odd, and v/2 when n is even. The results are generalizations of the previous results for a single monomer in an otherwise fully packed lattice of dimers.Comment: 4 pages, 2 figure

    New Lower Bounds on the Self-Avoiding-Walk Connective Constant

    Full text link
    We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice ZdZ^d. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high dd, and in fact agree with the first four terms of the 1/d1/d expansion for the connective constant. The bounds are the best to date for dimensions d3d \geq 3, but do not produce good results in two dimensions. For d=3,4,5,6d=3,4,5,6, respectively, our lower bound is within 2.4\%, 0.43\%, 0.12\%, 0.044\% of the value estimated by series extrapolation.Comment: 35 pages, 388480 bytes Postscript, NYU-TH-93/02/0

    The Dialogic: art work as method

    Get PDF
    This paper discusses how the multisite artwork The Dialogic demonstrates an innovative, supportive and generative artwork-as-method which resists overly reductive, and prescriptive tendencies within practice-led research. It continues a dialogue between participants that has been ongoing since 2012. The Dialogic has been adapted through the work of multiple artists, and this iteration is offered as a dialogue between the artists John Hammersley and Rachelle Viader Knowles in response to reflections in the work of Simon Pope. The Dialogic emerged as a method-work which imbricates the artist in socially situated exchange across multiple contexts, enacts coauthored and co-produced meaning-making, and challenges assumptions about the separation of art and research and notions of the detached artist-researcher. Its innovative contribution to practice-led research is how it demonstrates dialogical art as the on-going re-construction of a community of support, sustained through a commitment to knowledge mobilization, continued exchange and engagement in which the artist and their work are ‘answerable’ for the choices and actions in their art-as-research. The work functions as a generative research tool. It demonstrates how semi-structured everyday conversational-exchange-as-art can simultaneously lead to the emergence of subconsciously held insights, construct a community of practice that helps shape thinking outside of institutional frameworks, and act as a situated literature review that may disrupt traditional frameworks of knowledge production normalized in much fine art research. The authors argue that this method is appropriate to dialogical art-as-research as it makes a necessary contribution to the practice-led research tool box. It offers a method of distributive authorship grounded in an emergent, situated and more provisional mode of meaning-making that facilitates generous, democratized, peer-to-peer co-mentorship and skill-sharing contributing to understandings of dialogical art as research. This they argue is an increasingly necessary counterpoint to the reduction of practice-led fine art research to a training in mechanistic methods, reductive evaluation, and singular concrete outcomes aimed at satisfying the artist-researcher as customer and consumer

    An Asymptotic Expansion and Recursive Inequalities for the Monomer-Dimer Problem

    Full text link
    Let (lambda_d)(p) be the p monomer-dimer entropy on the d-dimensional integer lattice Z^d, where p in [0,1] is the dimer density. We give upper and lower bounds for (lambda_d)(p) in terms of expressions involving (lambda_(d-1))(q). The upper bound is based on a conjecture claiming that the p monomer-dimer entropy of an infinite subset of Z^d is bounded above by (lambda_d)(p). We compute the first three terms in the formal asymptotic expansion of (lambda_d)(p) in powers of 1/d. We prove that the lower asymptotic matching conjecture is satisfied for (lambda_d)(p).Comment: 15 pages, much more about d=1,2,

    Inversion of stellar statistics equation for the Galactic Bulge

    Get PDF
    A method based on Lucy (1974, AJ 79, 745) iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K-band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10 deg.>|b|>2 deg., |l|<15 deg.). The top end of the K-band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by Lopez-Corredoira et al.(1997, MNRAS 292, L15), are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M_K=-8.0 mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12 deg. in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major-minor axial ratio of the ellipsoids is found not to be constant. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc<t<3000 pc, are calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K_z is allowed to vary. From these, the total number of bulge stars is ~ 3 10^{10} or ~ 4 10^{10}, respectively.Comment: 19 pages, 23 figures, accepted in MNRA
    corecore