7,444 research outputs found

    Three particle quantization condition in a finite volume: 2. general formalism and the analysis of data

    Full text link
    We derive the three-body quantization condition in a finite volume using an effective field theory in the particle-dimer picture. Moreover, we consider the extraction of physical observables from the lattice spectrum using the quantization condition. To illustrate the general framework, we calculate the volume-dependent three-particle spectrum in a simple model both below and above the three-particle threshold. The relation to existing approaches is discussed in detail.Comment: 36 pages, 9 figure

    Towards a robust estimate of the merger rate evolution using near-IR photometry

    Get PDF
    We use a combination of deep, high angular resolution imaging data from the CDFS (HST/ACS GOODS survey) and ground based near-IR KsK_s images to derive the evolution of the galaxy major merger rate in the redshift range 0.2z1.20.2 \leq z \leq 1.2. We select galaxies on the sole basis of their J-band rest-frame, absolute magnitude, which is a good tracer of the stellar mass. We find steep evolution with redshift, with the merger rate (1+z)3.43±0.49\propto (1+z)^{3.43\pm0.49} for optically selected pairs, and (1+z)2.18±0.18\propto (1+z)^{2.18\pm0.18} for pairs selected in the near-IR. Our result is unlikely to be affected by luminosity evolution which is relatively modest when using rest-frame J band selection. The apparently more rapid evolution that we find in the visible is likely caused by biases relating to incompleteness and spatial resolution affecting the ground based near IR photometry, underestimating pair counts at higher redshifts in the near-IR. The major merger rate was \sim5.6 times higher at z1.2z\sim1.2 than at the current epoch. Overall 41%×\times(0.5\gyr/τ\tau) of all galaxies with MJ19.5M_J\leq-19.5 have undergone a major merger in the last \sim8 \gyr, where τ\tau is the merger timescale. Interestingly, we find no effect on the derived major merger rate due to the presence of the large scale structure at z=0.735z=0.735 in the CDFS.Comment: Accepted for Publication in ApJ. 9 Figure

    Theoretical Constraints and Systematic Effects in the Determination of the Proton Form Factors

    Get PDF
    We calculate the two-photon exchange corrections to electron-proton scattering with nucleon and Δ\Delta intermediate states. The results show a dependence on the elastic nucleon and nucleon-Δ\Delta-transition form factors used as input which leads to significant changes compared to previous calculations. We discuss the relevance of these corrections and apply them to the most recent and precise data set and world data from electron-proton scattering. Using this, we show how the form factor extraction from these data is influenced by the subsequent inclusion of physical constraints. The determination of the proton charge radius from scattering data is shown to be dominated by the enforcement of a realistic spectral function. Additionally, the third Zemach moment from the resulting form factors is calculated. The obtained radius and Zemach moment are shown to be consistent with Lamb shift measurements in muonic hydrogen.Comment: minor changes, added references, version to appear in PR

    The Evolution of the Baryonic Tully-Fisher Relation over the past 6 Gyr

    Full text link
    Scaling relations are salient ingredients of galaxy evolution and formation models. I summarize results from the IMAGES survey, which combines spatially-resolved kinematics from FLAMES/GIRAFFE with imaging from HST/ACS and other facilities. Specifically, I will focus on the evolution of the stellar mass and baryonic Tully-Fisher Relations (TFR) from z=0.6 down to z=0. We found a significant evolution in zero point and scatter of the stellar mass TFR compared to the local Universe. Combined with gas fractions derived by inverting the Schmidt-Kennicutt relation, we derived for the first time a baryonic TFR at high redshift. Conversely to the stellar mass TFR, the baryonic relation does not appear to evolve in zero point, which suggests that most of the reservoir of gas converted into stars over the past 6 Gyr was already gravitationally bound to galaxies at z=0.6.Comment: To be published in the proceedings of the IAU Symposium 277 "Tracing the Ancestry of Galaxies"; 4 pages, 1 figur

    How was the Hubble sequence 6 Gyrs ago?

    Get PDF
    The way galaxies assemble their mass to form the well-defined Hubble sequence is amongst the most debated topic in modern cosmology. One difficulty is to link distant galaxies to those at present epoch. We aim at establishing how were the galaxies of the Hubble sequence, 6 Gyrs ago. We intend to derive a past Hubble sequence that can be causally linked to the present-day one. We selected samples of nearby galaxies from the SDSS and of distant galaxies from the GOODS survey. We verified that each sample is representative of galaxies. We further showed that the observational conditions necessary to retrieve their morphological classification are similar in an unbiased way. Morphological analysis has been done in an identical way for all galaxies in the two samples. We found an absence of number evolution for elliptical and lenticular galaxies, which strikingly contrasts with the strong evolution of spiral and peculiar galaxies. Spiral galaxies were 2.3 times less abundant in the past, that is exactly compensated by the strong decrease by a factor 5 of peculiar galaxies. It strongly suggests that more than half of the present-day spirals had peculiar morphologies, 6 Gyrs ago, and this has to be accounted by any scenario of galactic disk evolution and formation. The past Hubble sequence can be used to test these scenarios as well as to test evolution of fundamental planes for spirals and bulges.Comment: Version accepted by Astronomy and Astrophysics, October 21 2009. Including low resolution images. 11 pages, 8 figure

    Star formation rates of distant luminous infrared galaxies derived from Halpha and IR luminosities

    Full text link
    We present a study of the star formation rate (SFR) for a sample of 16 distant galaxies detected by ISOCAM at 15um in the CFRS0300+00 and CFRS1400+52 fields. Their high quality and intermediate resolution VLT/FORS spectra have allowed a proper correction of the Balmer emission lines from the underlying absorption. Extinction estimates using the Hbeta/Hgamma and the Halpha/Hbeta Balmer decrement are in excellent agreement, providing a robust measurement of the instantaneous SFR based on the extinction-corrected Halpha luminosity. Star formation has also been estimated exploiting the correlations between IR luminosity and those at MIR and radio wavelengths. Our study shows that the relationship between the two SFR estimates follow two distinct regimes: (1) for galaxies with SFRIR below ~ 100Msolar/yr, the SFR deduced from Halpha measurements is a good approximation of the global SFR and (2) for galaxies near of ULIRGs regime, corrected Halpha SFR understimated the SFR by a factor of 1.5 to 2. Our analyses suggest that heavily extincted regions completely hidden in optical bands (such as those found in Arp 220) contribute to less than 20% of the global budget of star formation history up to z=1.Comment: (1) GEPI, Obs. Meudon, France ;(2) CEA-Saclay, France ;(3) ESO, Gemany ;(4) IAC, Spain. To appear in A&

    A large sample of low surface brightness disk galaxies from the SDSS. I: The sample and the stellar populations

    Full text link
    We present the properties of a large sample (12,282) of nearly face-on low surface brightness (LSB) disk galaxies selected from the main galaxy sample of SDSS-DR4. These properties include B-band central surface brightness mu_0(B), scale lengths h, integrated magnitudes, colors, and distances D. This sample has mu_0(B) values from 22 to 24.5 mag arcsec^{-2} with a median value of 22.42 mag arcsec^{-2}, and disk scale lengths ranging from 2 to 19 kpc. They are quite bright with M_B taking values from -18 to -23 mag with a median value of -20.08 mag. There exist clear correlations between logh and M_B, logh and logD, logD and M_B. However, no obvious correlations are found between mu_0(B) and logh, colors etc. The correlation between colors and logh is weak even though it exists. Both the optical-optical and optical-NIR color-color diagrams indicate that most of them have a mixture of young and old stellar populations. They also satisfy color-magnitude relations, which indicate that brighter galaxies tend generally to be redder. The comparison between the LSBGs and a control sample of nearly face-on disk galaxies with higher surface brightness (HSB) with mu_0(B) from 18.5 to 22 mag arcsec^{-2} show that, at a given luminosity or distance, the observed LSB galaxies tend to have larger scale lengths. These trends could be seen gradually by dividing both the LSBGs and HSBGs into two sub-groups according to surface brightness. A volume-limited sub-sample was extracted to check the incompleteness of surface brightness. The only one of the property relations having an obvious change is the relation of logh versus mu_0(B), which shows a correlation in this sub-sample.Comment: 14 pages, 18 figures, accepted for publication in MNRA

    Environment, morphology and stellar populations of bulgeless low surface brightness galaxies

    Full text link
    Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology and stellar population of bulgeless low surface brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and MrM_r \leq 18.8-18.8. The local density parameter Σ5\Sigma_5 is used to trace their environments. We find that, for bulgeless galaxies, the surface brightness does not depend on the environment. The stellar populations are compared for bulgeless LSB galaxies in different environments and for bulgeless LSB galaxies with different morphologies. The stellar populations of LSB galaxies in low density regions are similar to those of LSB galaxies in high density regions. Irregular LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics including mergers rather than by their large scale environment.Comment: 12 pages, 13 figures, Accepted by A&
    corecore