920 research outputs found

    Direct test of defect mediated laser induced melting theory for two dimensional solids

    Get PDF
    We investigate by direct numerical solution of appropriate renormalization flow equations, the validity of a recent dislocation unbinding theory for laser induced freezing/melting in two dimensions. The bare elastic moduli and dislocation fugacities which are inputs to the flow equations are obtained for three different 2-d systems (hard disk, inverse 12th12^{th} power and the Derjaguin-Landau-Verwey-Overbeek potentials) from a restricted Monte Carlo simulation sampling only configurations {\em without} dislocations. We conclude that (a) the flow equations need to be correct at least up to third order in defect fugacity to reproduce meaningful results, (b) there is excellent quantitative agreement between our results and earlier conventional Monte Carlo simulations for the hard disk system and (c) while the qualitative form of the phase diagram is reproduced for systems with soft potentials there is some quantitative discrepancy which we explain.Comment: 11 pages, 14 figures, submitted to Phys. Rev.

    Micellization of Sliding Polymer Surfactants

    Full text link
    Following up a recent paper on grafted sliding polymer layers (Macromolecules 2005, 38, 1434-1441), we investigated the influence of the sliding degree of freedom on the self-assembly of sliding polymeric surfactants that can be obtained by complexation of polymers with cyclodextrins. In contrast to the micelles of quenched block copolymer surfactants, the free energy of micelles of sliding surfactants can have two minima: the first corresponding to small micelles with symmetric arm lengths, and the second corresponding to large micelles with asymmetric arm lengths. The relative sizes and concentrations of small and large micelles in the solution depend on the molecular parameters of the system. The appearance of small micelles drastically reduces the kinetic barrier signifying the fast formation of equilibrium micelles.Comment: Submitted to Macromolecule
    corecore