34 research outputs found

    MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B- cell lymphoma

    Get PDF
    Despite better therapeutic options and improved survival of diffuse large B-cell lymphoma (DLBCL), 30-40% of the patients experience relapse or have primary refractory disease with a dismal prognosis. To identify biological correlates for treatment resistance, we profiled microRNAs (miRNAs) of matched primary and relapsed DLBCL by next-generation sequencing. Altogether 492 miRNAs were expressed in the DLBCL samples. Thirteen miRNAs showed significant differential expression between primary and relapse specimen pairs. Integration of the differentially expressed miRNAs with matched mRNA expression profiles identified highly anti-correlated, putative targets, which were significantly enriched in cancer-associated pathways, including phosphatidylinositol (PI)), mitogen-activated protein kinase (MAPK), and B-cell receptor (BCR) signaling. Expression data suggested activation of these pathways during disease progression, and functional analyses validated that miR-370-3p, miR-381-3p, and miR-409-3p downregulate genes on the PI, MAPK, and BCR signaling pathways, and enhance chemosensitivity of DLBCL cells in vitro. High expression of selected target genes, that is, PIP5K1 and IMPA1, was found to be associated with poor survival in two independent cohorts of chemoimmunotherapy-treated patients (n = 92 and n = 233). Taken together, our results demonstrate that differentially expressed miRNAs contribute to disease progression by regulating key cell survival pathways and by mediating chemosensitivity, thus representing potential novel therapeutic targets.Peer reviewe

    Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory assays are needed for early stage non-small lung cancer (NSCLC) that can link molecular and clinical heterogeneity to predict relapse after surgical resection. We technically validated two miRNA assays for prediction of relapse in NSCLC. Total RNA from seventy-five formalin-fixed and paraffin-embedded (FFPE) specimens was extracted, labeled and hybridized to Affymetrix miRNA arrays using different RNA input amounts, ATP-mix dilutions, array lots and RNA extraction- and labeling methods in a total of 166 hybridizations. Two combinations of RNA extraction- and labeling methods (assays I and II) were applied to a cohort of 68 early stage NSCLC patients.</p> <p>Results</p> <p>RNA input amount and RNA extraction- and labeling methods affected signal intensity and the number of detected probes and probe sets, and caused large variation, whereas different ATP-mix dilutions and array lots did not. Leave-one-out accuracies for prediction of relapse were 63% and 73% for the two assays. Prognosticator calls ("no recurrence" or "recurrence") were consistent, independent on RNA amount, ATP-mix dilution, array lots and RNA extraction method. The calls were not robust to changes in labeling method.</p> <p>Conclusions</p> <p>In this study, we demonstrate that some analytical conditions such as RNA extraction- and labeling methods are important for the variation in assay performance whereas others are not. Thus, careful optimization that address all analytical steps and variables can improve the accuracy of prediction and facilitate the introduction of microRNA arrays in the clinic for prediction of relapse in stage I non-small cell lung cancer (NSCLC).</p

    Translocation detection in lymphoma diagnosis by split-signal FISH: a standardised approach

    Get PDF
    Lymphomas originating from the lymphatic system comprise about 30 entities classified according to the World Health Organization (WHO). The histopathological diagnosis is generally considered difficult and prone to mistakes. Since non-random chromosomal translocations are specifically involved in different lymphoma entities, their detection will be increasingly important. Hence, a split-signal fluorescence in situ hybridisation (FISH) procedure would be helpful in discriminating the most difficult classifications. The Euro-FISH programme, a concerted action of nine European laboratories, has validated a robust, standardised protocol to improve the diagnostic approach on lymphoma entities. Therefore, 16 fluorescent probes and 10 WHO entities, supplemented with reactive cases, were selected. The results of the Euro-FISH programme show that all probes were correctly cytogenetically located, that the standardised protocol is robust, resulting in reliable results in approximately 90% of cases, and that the procedure could be implemented in every laboratory, bringing the relatively easy interpretation of split-signal probes within the reach of many pathology laboratories

    Existing data sources for clinical epidemiology: the Danish National Pathology Registry and Data Bank

    Get PDF
    Diagnostic histological and cytological specimens are routinely stored in pathology department archives. These biobanks are a valuable research resource for many diseases, particularly if they can be linked to high quality population-based health registries, allowing large retrospective epidemiological studies to be carried out. Such studies are of significant importance, for example in the search for novel prognostic and predictive biomarkers in the era of personalized medicine. Denmark has a wealth of highly-regarded population-based registries that are ideally suited to conduct this type of epidemiological research. We describe two recent additions to these databases: the Danish National Pathology Registry (DNPR) and its underlying national online registration database, the Danish Pathology Data Bank (DPDB). The DNPR and the DPDB contain detailed nationwide records of all pathology specimens analyzed in Denmark since 1997, and an incomplete but nonetheless valuable record of specimens from some pathology departments dating back to the 1970s. The data are of high quality and completeness and are sufficient to allow precise and efficient localization of the specimens. We describe the relatively uncomplicated procedures required to use these pathology databases in clinical research and to gain access to the archived specimens

    Digital Image Analysis of Ki-67 Stained Tissue Microarrays and Recurrence in Tamoxifen-Treated Breast Cancer Patients

    Get PDF
    Purpose: The proliferation marker Ki-67 has been used as a prognostic marker to separate low- and high-risk breast cancer subtypes and guide treatment decisions for adjuvant chemotherapy. The association of Ki-67 with response to tamoxifen therapy is unclear. High-throughput automated scoring of Ki-67 might enable standardization of quantification and definition of clinical cut-off values. We hypothesized that digital image analysis (DIA) of Ki-67 can be used to evaluate proliferation in breast cancer tumors, and that Ki-67 may be associated with tamoxifen resistance in early-stage breast cancer. Patients and Methods: Here, we apply DIA technology from Visiopharm using a custom designed algorithm for quantifying the expression of Ki-67, in a case–control study nested in the Danish Breast Cancer Group clinical database, consisting of stages I, II, or III breast cancer patients of 35– 69 years of age, diagnosed during 1985– 2001, in the Jutland peninsula, Denmark. We assessed DIA-Ki-67 score on tissue microarrays (TMAs) from breast cancer patients in a case–control study including 541 ER-positive and 300 ER-negative recurrent cases and their non-recurrent controls, matched on ER-status, cancer stage, menopausal status, year of diagnosis, and county of residence. We used logistic regression to estimate odds ratios and associated 95% confidence intervals to determine the association of Ki-67 expression with recurrence risk, adjusting for matching factors, chemotherapy, type of surgery, receipt of radiation therapy, age category, and comorbidity. Results: Ki-67 was not associated with increased risk of recurrence in tamoxifen-treated patients (ORadj =0.72, 95% CI 0.54, 0.96) or ER-negative patients (ORadj =0.85, 95% CI 0.54, 1.34). Conclusion: Our findings suggest that Ki-67 digital image analysis in TMAs is not associated with increased risk of recurrence among tamoxifen-treated ER-positive breast cancer or ER-negative breast cancer patients. Overall, our findings do not support an increased risk of recurrence associated with Ki-67 expression.publishedVersio
    corecore