1,339 research outputs found
Optical investigation of thermoelectric topological crystalline insulator PbSnSe
PbSnSe is a novel alloy of two promising thermoelectric
materials PbSe and SnSe that exhibits a temperature dependent band inversion
below 300 K. Recent work has shown that this band inversion also coincides with
a trivial to nontrivial topological phase transition. To understand how the
properties critical to thermoelectric efficiency are affected by the band
inversion, we measured the broadband optical response of
PbSnSe as a function of temperature. We find clear optical
evidence of the band inversion at K, and use the extended Drude
model to accurately determine a dependence of the bulk carrier
lifetime, associated with electron-acoustic phonon scattering. Due to the high
bulk carrier doping level, no discriminating signatures of the topological
surface states are found, although their presence cannot be excluded from our
data.Comment: 11 pages, 6 figure
Contested Places: A Typology for Responding to Place-based Harms
In response to historic and ongoing devaluation of certain people, and concurrently, the places they live, many communities are grappling with how to respond to place-based harms. This has produced a wide range of responses, such as calls for “Land Back,” reparations programs, arts-based neighborhood regeneration, and local history initiatives. This paper explores the potential roles community practitioners can play in these contested places. Drawing on a review of the literature, this paper offers an emerging typology for responding to place-based harms
Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure
Human oral microbial communities are diverse, with implications for oral and systemic health. Oral microbial communities change over time; thus, it is important to understand how healthy versus dysbiotic oral microbiomes differ, especially within and between families. There is also a need to understand how the oral microbiome composition is changed within an individual including by factors such as environmental tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant potential. Using archived saliva samples collected from caregivers and children during a 90-month follow-up assessment in a longitudinal study of child development in the context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary microbiome. A total of 724 saliva samples were available, 448 of which were from caregiver/child dyads, an additional 70 from children and 206 from adults. We compared children’s and caregivers’ oral microbiomes, performed “stomatotype” analyses, and examined microbial relations with concentrations of salivary markers associated with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same biospecimens. Our results indicate that children and caregivers share much of their oral microbiome diversity, but there are distinct differences. Microbiomes from intrafamily individuals are more similar than microbiomes from nonfamily individuals, with child/caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor fewer potential pathogens than caregivers, and participants’ microbiomes clustered into two groups, with major differences being driven by Streptococcus spp. Differences in salivary microbiome composition associated with ETS exposure, and taxa associated with salivary analytes representing potential associations between antioxidant potential, metabolic regulation, and the oral microbiome
Urokinase-type plasminogen activator and arthritis progression: contrasting roles in systemic and monoarticular arthritis models
INTRODUCTION: Urokinase-type plasminogen activator (u-PA) has been implicated in tissue destruction/remodeling. The absence of u-PA results in resistance of mice to systemic immune complex-driven arthritis models; monoarticular arthritis models involving an intra-articular (i.a.) antigen injection, on the other hand, develop more severe arthritis in its absence. The aims of the current study are to investigate further these contrasting roles that u-PA can play in the pathogenesis of inflammatory arthritis and to determine whether u-PA is required for the cartilage and bone destruction associated with disease progression. METHODS: To determine how the different pathogenic mechanisms leading to arthritis development in the different models may explain the contrasting requirement for u-PA, the systemic, polyarticular, immune complex-driven K/BxN arthritis model was modified to include an i.a. injection of saline as a local trauma in u-PA-/- mice. This modified model and the antigen-induced arthritis (AIA) model were also used in u-PA-/- mice to determine the requirement for u-PA in joint destruction. Disease severity was determined by clinical and histologic scoring. Fibrin(ogen) staining and the matrix metalloproteinase (MMP)-generated neoepitope DIPEN staining were performed by immunohistochemistry. Gene expression of inflammatory and destructive mediators was measured in joint tissue by quantitative PCR. RESULTS: In our modified arthritis model, u-PA-/- mice went from being resistant to arthritis development following K/BxN serum transfer to being susceptible following the addition of an i.a. injection of saline. u-PA-/- mice also developed more sustained AIA compared with C57BL/6 mice, including reduced proteoglycan levels and increased bone erosions, fibrin(ogen) deposition and DIPEN expression. Synovial gene expression of the proinflammatory mediators (TNF and IL-1β), aggrecanases (ADAMTS-4 and -5) and MMPs (MMP3 and MMP13) were all sustained over time following AIA induction in u-PA-/- mice compared with C57BL/6 mice. CONCLUSIONS: We propose that u-PA has a protective role in arthritis models with 'wound healing-like' processes following local trauma, possibly through u-PA/plasmin-mediated fibrinolysis, but a deleterious role in systemic models that are critically dependent on immune complex formation and complement activation. Given that cartilage proteoglycan loss and bone erosions were present and sustained in u-PA-/- mice with monoarticular arthritis, it is unlikely that u-PA/plasmin-mediated proteolysis is contributing directly to this tissue destruction/remodeling
Sediment supply and barrier dynamics as driving mechanisms of Holocene coastal change for the southern North Sea basin
The combined effects of climate change and human impact lead to regional and local coastal responses that pose major challenges for the future resilience of coastal landscapes, increasing the vulnerability of communities, infrastructure and nature conservation interests. Using the Suffolk coast, southeast England, as a case study, we investigate the importance of sediment supply and barrier dynamics as driving mechanisms of coastal change throughout the Holocene. Litho-, bio- and chronostratigraphic methods are used to decipher the mechanisms of coastal change from the record preserved within coastal stratigraphy. Results suggest that local coastal configuration and sediment supply were the most influential in determining coastal change during the mid- and late Holocene, against a background control of sea-level rise. The importance of sedimentological and morphological factors in shaping Holocene coastal changes in the southern North Sea basin must therefore be considered when using the database of evidence from this region as an analogue for future change under accelerated sea-level rise
Racial Differences in Outcomes of an Advance Care Planning Intervention for Dialysis Patients and Their Surrogates
Background: African Americans' beliefs about end-of-life care may differ from those of whites, but racial differences in advance care planning (ACP) outcomes are unknown
Landscape transcriptomics as a tool for addressing global change effects across diverse species
Landscape transcriptomics is an emerging field studying how genome-wide expression patterns reflect dynamic landscape-scale environmental drivers, including habitat, weather, climate, and contaminants, and the subsequent effects on organismal function. This field is benefitting from advancing and increasingly accessible molecular technologies, which in turn are allowing the necessary characterization of transcriptomes from wild individuals distributed across natural landscapes. This research is especially important given the rapid pace of anthropogenic environmental change and potential impacts that span levels of biological organization. We discuss three major themes in landscape transcriptomic research: connecting transcriptome variation across landscapes to environmental variation, generating and testing hypotheses about the mechanisms and evolution of transcriptomic responses to the environment, and applying this knowledge to species conservation and management. We discuss challenges associated with this approach and suggest potential solutions. We conclude that landscape transcriptomics has great promise for addressing fundamental questions in organismal biology, ecology, and evolution, while providing tools needed for conservation and management of species
- …