850 research outputs found

    Approximate Method of Calculating Heating Rates at General Three-Dimensional Stagnation Points During Atmospheric Entry

    Get PDF
    An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications

    Calculation of inviscid flow over shuttle-like vehicles at high angles of attack and comparisons with experimental data

    Get PDF
    A computer code HALIS, designed to compute the three dimensional flow about shuttle like configurations at angles of attack greater than 25 deg, is described. Results from HALIS are compared where possible with an existing flow field code; such comparisons show excellent agreement. Also, HALIS results are compared with experimental pressure distributions on shuttle models over a wide range of angle of attack. These comparisons are excellent. It is demonstrated that the HALIS code can incorporate equilibrium air chemistry in flow field computations

    Viscous compressible flow about blunt bodies using a numerically generated orthogonal coordinate system

    Get PDF
    A numerical solution to the Navier-Stokes equations was obtained for blunt axisymmetric entry bodies of arbitrary shape in supersonic flow. These equations are solved on a finite difference mesh obtained from a simple numerical technique which generates orthogonal coordinates between arbitrary boundaries. The governing equations are solved in time dependent form using Stetter's improved stability three step predictor corrector method. For the present application, the metric coefficients were obtained numerically using fourth order accurate, finite difference relations and proved to be totally reliable for the highly stretched mesh used to resolve the thin viscous boundary layer. Solutions are obtained for a range of blunt body nose shapes including concavities

    Calculation of laminar heating rates on three-dimensional configurations using the axisymmetric analogue

    Get PDF
    A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions

    Solution of axisymmetric and two-dimensional inviscid flow over blunt bodies by the method of lines

    Get PDF
    Comparisons with experimental data and the results of other computational methods demonstrated that very accurate solutions can be obtained by using relatively few lines with the method of lines approach. This method is semidiscrete and has relatively low core storage requirements as compared with fully discrete methods since very little data were stored across the shock layer. This feature is very attractive for three dimensional problems because it enables computer storage requirements to be reduced by approximately an order of magnitude. In the present study it was found that nine lines was a practical upper limit for two dimensional and axisymmetric problems. This condition limits application of the method to smooth body geometries where relatively few lines would be adequate to describe changes in the flow variables around the body. Extension of the method to three dimensions was conceptually straightforward; however, three dimensional applications would also be limited to smooth body geometries although not necessarily to total of nine lines

    Orbiter catalytic/noncatalytic heat transfer as evidenced by heating to contaminated surfaces on STS-2 and STS-3

    Get PDF
    During that portion of Space Shuttle orbiter entry when significant aerodynamic heat transfer occurs, the flow over the vehicle is in chemical nonequilibrium. The parameter which most significantly influences the level of surface heat transfer in such a flow field is the catalytic efficiency of the surface with respect to the recombination of dissociated oxygen atoms. Significant, and instantaneous, changes were observed in the level of heat transfer at several lower surface centerline locations on STS-2 and STS-3. This phenomenon apparently resulted from a sudden change in the surface catalytic efficiency at these locations due to contamination of the surface by metallic oxides. As a result, data obtained from affected measurements cannot be considered as benchmark data with which to attempt to characterize nonequilibrium heat transfer to the orbiter's lower surface centerline

    Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Get PDF
    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid

    Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    Get PDF
    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented

    Calculation of convective and radiative heating on the forebody heatshield of the aeroassist flight experiment vehicle

    Get PDF
    The total (convective and radiative) heating is calculated over the entire forebody heatshield of the Aeroassist Flight Experiment (AFE) vehicle. The convective heating is calculated using a three-dimensional Navier-Stokes code (LAURA) which includes both chemical and thermal nonequilibrium effects. The flowfield solution is then used to provide inputs to a nonequilibrium air radiation code (NEQAIR) to calculate the nonequilibrium radiative heating. Results are presented at two points on the current Baseline 5A trajectory corresponding to the start of the primary data taking period and peak heating

    Geometerial description for a proposed aeroassist flight experiment vehicle

    Get PDF
    One geometry currently under consideration for the Aeroassist Flight Experiment (AFE) vehicle is composed of several segments of simple general conics: an ellipsoidal nose tangent to an elliptical cone and a base skirt with the base plane raked relative to the body axis. An analytic representation for the body coordinates and first and second partial derivatives of this configuration has been developed. Equations are given which define the body radius and partial derivatives for a prescribed axial and circumferential position on the vehicle. The results for a sample case are tabulated and presented graphically
    • …
    corecore