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INTRODUCTION

Advances in computational techniques and computers in the past few years make it
practical to compute the steady inviscid flow field about complex three-dimensional
bodies, such as the Space Shuttle orbiter or other advanced entry vehicles, in their
actual supersonic or hypersonic flight environment., The inviscid flow field provides
surface pressures, which can be integrated to obtain aerodynamic loads, and other
flow properties which are required to calculate surface heating rates {(ref. 1) needed
to define the thermal environment.

These vehicles enter the atmosphere at relatively large angles of attack which
will lead to one of two classes of problems. (See fig. 1.) If the angle of attack
is moderate (25° to 35° for Shuttle-like vehicles), the subsonic portion of the flow
field is generally confined to the vehicle nose. Several papers (refs. 2 to 5) have
presented time-asymptotic methods of efficiently solving the three-dimensional invis-
cid flow over blunt-nosed bodies at moderate angle of attack where the subsonic
region is relatively small, These solutions provide a data surface, downstream of
the subsonic region, on which the local flow velocity is supersonic. Several papers
(refs. 6 to 9) have presented methods for continuing the solution downstream in the
supersonic region by using spatial marching techniques. Since these techniques use
spatial marching, they require relatively low computer storage. These methods have
been shown to provide good results unless additional embedded pockets of subsonic
flow are encountered (such as near the leading edge of wings) where the spatial
marching techniques break down.

When the angle of attack is large (greater than 35°), the subsonic region is no
longer confined to the nose but extends much farther downstream and can envelop much
of the lower surface. (See fig. 1.) Since the entire subsonic region must be com-—
puted simultaneously, the time—asymptotic portion of the solution will require many
more grid points than required for the moderate angle-of-attack case discussed pre-
viously. Therefore, codes must be structured for computers that have the storage and
computational speed required to solve this type of problem (which may require 90 000
or more grid points). Thus, existing time-asymptotic methods {(refs. 2 to 5}, either
because they are constructed for scalar computation or because of the coordinate
system used in the code, are not suited to solve the flow over complete vehicles with
complex three-dimensional geometries at high angle of attack. 1In reference 10, it is
shown that a vector-processing computer is ideally suited for solving this type of
large flow-field problem.

The present paper presents a time-asymptotic method that is being developed for
the CDC® CYBER 203 vector-processing computer which will be able to solve the flow
over complex three-dimensional bodies (Shuttle-like geometries at large angle of
attack) where large embedded subsonic regions occur. Results are presented in this
paper which demonstrate the capability of the code HALIS (High Alpha Inviscid
Solution) to compute the flow field over the Space Shuttle orbiter at large angles of
attack. Additional applications of the HALIS code may be found in reference 11 for
comparisons with Shuttle tunnel data and reference 12 for comparison with Shuttle
flight data. The components of the Euler equations as well as the development of the
transformed equations in both the spherical and cylindrical coordinate systems are
presented in appendix A. The Euler equations in the spherical coordinate system
along the ray O = m are given in appendix B. A stability analysis is presented in



appendix C by M. J. Hamilton. The method for determining the shock velocity and
other flow properties at the shock wave is outlined in appendix D.

SYMBOLS
a local speed of sound, ;/Um
Cp pressure coefficient
E total energy, ﬁ/Um2
e internal energy, g/Uw2
f dummy variable used in generalized description of derivative forms
H total enthalpy, ;X/Uw2
h static enthalpy, }:/Uw2
L total length of vehicle, 1290 inches to hinge line
Lo reference length, ft
M Mach number
n, outer unit normal to body
ng outer unit normal to shock
P pressure, E/Swaz
R gas constant, ftz/sec2—°R
r cylindrical coordinate, in.
r spherical coordinate, in.
S entropy, §/R
T vector defined by equation (11)
t time, t/(L,/U,)
U velocity, ft/sec
u, r-velocity component, Gr/UOD
ug F¥-velocity component, Gf/Um
u, z-velocity component, Gz/Uw
ue g-velocity component, GB/U°°
u<I> ¢-velocity component, G¢/U°°




ug F-velocity component, GE/Um

v total velocity vector, G/U°°

Vg shock velocity, GS/U°°

w,F,G,H,Q vectors defined in equations (A8)

ﬁ,?,&,ﬁ,é vectors defined in equations (A2)

ﬁ,?,E,E,B vectors defined in equations (B4)

z cylindrical coordinate

o angle of attack, deg

T distance between body and shock, defined in figure 7
Y ratio of specific heats

£ smoothing coefficient

n transformed cylindrical coordinate, equations (A9)
n transformed spherical coordinate, equations (A3)

0 spherical coordinate

g transformed cylindrical coordinate, equations (A9)
p density, 5/6°°

¢ cylindrical coordinate

® spherical coordinate

¢ transformed cylindrical coordinate, equations (A9)
I transformed spherical coordinate, equations (A3)

W transformed spherical coordinate, equations (A3)
Subscripts:

b body surface

max maximum

s shock surface

w wall surface

w free-stream conditions




Notation over symbols:

dimensional variable

> vector

unit vector

- spherical coordinate system

= 5 = 1 plane in spherical coordinate system

COORDINATE SYSTEMS

The method of solution presented in this report requires that the outer boundary
of the solution space correspond to the bow shock which envelops the entire vehicle
and that the inner boundary correspond to the vehicle surface. Also, it is required
that all coordinate lines extending between the body surface and the shock intersect
the body surface only one time. When the vehicle to be represented is a short blunt
body, a spherical coordinate system naturally satisfies these requirements. However,
when the body is blunt and many nose radii in length, the use of a spherical coordi-
nate system would result in a highly skewed physical grid. In order to avoid this
problem and still satisfy these grid requirements, the physical grid is constructed
by combining a spherical with a cylindrical coordinate system. Such a combined
coordinate system is shown in fiqure 2. 1In this right-hand system, the spherical and
cylindrical coordinate system are coupled at the plane 0 = w/2, z = 0 where the
two systems are coincident.

In the physical domain, computations are made in the spherical system over

- - - N

rb<r<rs

-7 n

L z 1
2 <0<7 ) (1)
T

5 <0< J

and in the cylindrical system over

rb Lr<r D
—n I
2 < 0 <3 ? (2)
0 <z¢Kz2
max J

A typical representation of this physical grid system is shown in figure 3(a), a
symmetry-plane view, and in figure 3(b), a cross-flow-plane view which corresponds to
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the exit plane of fiqure 3(a). In order to improve the clarity of these two figures,
a number of grid lines have been removed. As can be seen, the physical coordinate
system is skewed and nonorthogonal.

GEOMETRY DESCRIPTION

The vehicle configurations used for making flow-field calculations with the
present code are first modeled with QUICK - a geometry program described in refer-
ence 13. This model provides a smooth analytic description of the vehicle geometry
in a "local polar coordinate system," r =r (z,¢), with continuous surface deriva-
tives over the vehicle. The appropriate subroutines from QUICK have been included in
the present flow-field code so that the geometry models generated by QUICK can be
used in the present code for making flow-field calculations,

Two versions of the geometry of the Space Shuttle orbiter (shown in fig. 4) have
been modeled with QUICK as shown in figure 5. The first (fig. 5(a)) is a reasonably
accurate model of the actual vehicle with the canopy, vertical tail, and orbital
maneuverable system (OMS) pod removed. The second (fig. 5(b)) has the same lower
surface shape and the same profile for the upper symmetry plane as the first, but the
region between the leading edge of the strake or wing and the upper symmetry plane
have been replaced with elliptical segments as shown by dashed lines in section A-A
of figure 4. This process simplifies the leeside geometry and makes calculations in
this region easier but does not affect the results obtained on the windward side
since the cross-flow velocity goes supersonic near the wing tip. Since the flow in
the lower part of the shock layer on the leeside of a vehicle at large angle of
attack is viscous dominated (ref. 14) and cannot be accurately modeled with the
inviscid equations of motion, alteration of the inviscid solution on the leeside (due
to the modification of the leeside geometry) is of little consequence, Thus, all the
results for the flow field over the Space Shuttle orbiter presented in the present
paper were obtained with the modified geometry shown in figure 5(b).

METHOD OF SOLUTION
Flow-Field Bquations

The flow field of interest in this paper, will contain one or more internal
shock waves. Specifically, a cross-flow shock will be located on the leeside of the
vehicle near the upper symmetry plane, and under certain conditions a strake/wing
shock may appear. These shock waves must be properly resolved; thus, we have chosen
to "capture" these shocks since this technique is compatible with the vector-
processing characteristics of the CYBER 203 computer, Thus, in this paper, the time-
dependent, three-dimensional, compressible Euler equations are integrated in the weak
conservation form. These equations can be written in the general form in the spher-
ical coordinate system as

oW oF oG 3 =
-+ — 4+ +—+Q0=0 (3)
ot or 28 06

where the vectors W, ¥, G, and H represent the usual conserved quantities in the
spherical coordinate system and the vector § contains all the terms that arise from
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the use of a non-Cartesian coordinate system. In appendix A, the form of these vec-
tors is given for spherical coordinates in equations (A2). Likewise, the equations
can be written in the cylindrical coordinate system as

W , OF , OH 3G

where the vectors W, F, H, G, and Q are given in equations (A8).

The flow equations (egs. (3) and (4)) are transformed from the physical domain
to separate computational cubes, one corresponding to each coordinate system, by the
following equations which allow the description of a general body in terms of its
radius. For the spherical systen,

) T -7, (5,0 b
n =z - R (0 < n<1)
rs(t,¢,e) - rb(¢le)
E,=9”“n—"/2 (0 <P <1) 5 (5)
_m-~-8
w = 2 (O<m<1))
and for the cylindrical system,
r -rb(cb,Z) A
"I E e - () 0 <neh
¢=Mnn£ (0 < ¢ <) > (6)
z
€ =3 (0 < £ <1)
nax )

Details of the transformation are outlined in appendix A. Although the physical
domain is transformed to a computational domain, the velocity components are not
transformed, and they retain the same magnitude and direction in the computational
mesh as they did in the physical grid. 1In this paper, all computations are made by
using equally spaced meshes.




Numerical Procedure

The computational data base is arranged as shown in figure 6. The data base is
arranged in an interleaved manner (ref. 15). Interleaving, the sequential storage of
the data base associated with each computational plane, allows the efficient use of

the virtual memory system of the computer should the size of the code ever exceed the
available central memory.

Interior grid points.- The following discussion applies to all interior points
in the computational space except for those lying in the plane 6 = g, which will be
treated in a separate section. The governing equations (eqs. (A6) (spherical) and
(A12) (cylindrical)) are integrated in time with an unsplit MacCormack differencing
scheme (ref. 16). In the predictor step, the plane-by-plane integration is carried
out from the plane 06 = 1 to the plane 2z = Znax with forward differences in each
direction. (See fig. 6.)

The plane where the two coordinate systems are coincident is treated as part of
the spherical system when integrating the governing equations. To construct the for-
ward streamwise derivatives in the predictor step at the plane requires that a plane
of data be established at 6 = % - Af. This temporary plane of information is
obtained by interpolation from the planes of data in the cylindrical system immedi-
ately downstream of the plane z = 0. The thermodynamic properties transfer directly
from one coordinate system to the next; however, the interpolated velocity components
in the cylindrical system must be mapped back to the appropriate velocity components
in the spherical system.

To preserve the interleaving concept, the corrector step is begun in the plane
Z = Zooy and sweeps back to the plane 6 = n by using backward differences. Since
backward differences are used, no interpolation is needed when computing at the plane
6 = n/2 1in the spherical system. Also, backward derivatives for use in the first
computed plane in cylindrical system can be constructed directly from information in
the plane 6 = 7/2 since it is part of both coordinate systems. This construction
must take into account that in the plane 6 = 1/2,

Differencing at boundaries.- The governing equations must be integrated at both
the vehicle surface and the bow shock. To preserve the second-order spatial accuracy
of the n derivatives at these boundaries, the method of Abbett (ref. 17) is fol-

lowed and these derivatives in the spherical system are defined in the predictor step
as

REl ¢ £) T
- - w+1 w
on w A
g (7a)
Bl -5 )
on s An )




and in the corrector step as

<N
of 1
-g: _'Z:(-wa + 3fw+1 fw+2)

n w N

(7b)

L 3 _(2f - 3f + £ )

- - S s-1 S=2
on|g  An

J

Similar equations are used in the cylindrical system by replacing % with g. As
shown by Abbett, the net effect of using these derivatives in the MacCormack differ-
encing scheme is to have applied a second-order accurate, three-point backward dif-
ference at the boundary.

Shock derivatives.- Derivatives on the shock surface are necessary to update the
physical grid and to determine post-shock properties, When evaluating the streamwise
shock derivatives Qr /30 and @dr /dz, it is necessary to use noncentered four-point
derivatives of the fo¥m s

to prevent downstream disturbances from moving upstream along the shock and causing
oscillations in the shock about the stagnation point. At the outflow boundary a
three-point backward difference derivative is used for ars/az. In the plane 6 = 1,
which at the shock is really a point and not a surface, best results are obtained
when a centered two-point derivative is used for Qf_/36. Formulation of the stream-
wise shock derivatives by using noncentered four-point derivatives about the juncture
of the two coordinate systems requires that interpolated values of the shock position

be determined in both coordinate systems for both the predictor and corrector steps.

In the cross-flow planes, 6?5/66 and dr_/d¢ are approximated by two-point
centered derivatives,

Plane 6 = m.- The governing equations in the spherical coordinate system
(egq. (A1)) are singular at 6 = m. 1In appendix B, a reduced set of equations, wvalid
at 06 = 7, are developed. The desire is to integrate these equations in a manner
that is consistent with the integration scheme, that is, unsplit MacCormack scheme,




used in the rest of the symmetry plane. (See appendix B.) The equation to be

integrated is equation (B6), which is restated below in the computational
coordinates:

LOnW  BdMBF BN, dw ik v 54 Bwd (3¢ 88\, amd (3¢ BB\ _ (8)
at ot - T o0 -t 30 o0 20 ae-—-
an  or am on 3¢ 3¢ on\d¢ ¢

The integration of equation (8) requires information from the first two data

planes shown in figure 6. These two planes are shown in greater detail in the fol-
lowing sketch:

-
1]
Nl =
\
\
TI
N =
\

\

S| ——

@
i
3
@
]

3
|

&

Ry
|
[SIE]
\‘
1
1}
-1
L}
[
SE]
X‘

In appendix B, the number of equations represented by equation (8) was reduced
from five to four (at O = n) by restricting the integration of equation (8) to
points in the symmetry plane, To further simplify the integration, computations are
done in the windward symmetry plane, ¢ = -7/2. In equation (8), the integration
with respect to t is identical to that used in the rest of the flow field. 1In the
predictor step, the derivative aa/aw is taken to be

1 = ___11; - - ___ -
E[G(e:n—Ae,(b— 2,r) G(e =7, = )} (9a)

and in the corrector step, the derivative 3G/dw is approximated by

1 |8 . T = =,
-Za[%(9=n,¢=—§,r) G(?—n—AG ¢— ﬂ (9b)

When forming the quantities §(B=n—A9,$=g,f), the change in sign of ug must be

taken into account when going from ¢ = -m/2 to ¢ = m/2. (See eq. (B2a).)




The formation of the second derivatives in equation (8) can be simplified by
examining the_behavior of derivatives with respect to
First take 2S/d¢ with s = qu so that

fu- du—
M: u__a_g._’.fj
2o % 3% 36

In the definition of u$ on 6 =17 I(eq.

du=
—j:i = -ugl. sin 5
ol d=-1/2
or
du-~
= =u
2 [=-n/2  |3=-ns2

along the line ¢ = -gx/2. Finally,

By reug
(o] bp=-mn/2 (21}
Now § (eq. (B4d)) can be written as
S =u-7T
¢
where
- -
rp
) Z pus
T = _ r
rpu,
_r(E + le

10

(B2b)),

®

in the physical plane.

(10)

(11)




The substitution of T for the dummy function f in equation (10), along with the
fact that T is an even function about the symmetry plane, leads to the expression

= u T

o b=-n/2

o |o
&1 lm“

From equations (A4),

o»la
i

o |o

e-llsl

o>l0
S|

+
o |
eJlel

ol
o |
<1

and it has been established that 99 =0 on ¢ = q; thus,
3¢

_ T
¢=-m/2

= u

]

o lr
&1 |

o
eqlum
n
o |o
eJIGJ

This allows us to write the term

a_<§k &
an\de 3¢

found in equation (8) as

)

213

d =)
—iu T
08 6n< el$=-1t/2 )

‘ Thus, the differentiation can be handled the same as for the other % derivatives,
In a similar manner, in the predictor step,

Ef

| o -
: Owd fopdS)_1 dwlfdz= "¢ - (7

| 26 w(— ->_Aw ae(-T -) (Tagh| (122)
| 26 3¢ 36 86 /| 0 ag -n

b=-1/2 /2
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and in the corrector step,

- = _ - _ au-
dwd fdp &Sy _ 1 dwlg S e ) (12b)
96 2w\ .- .- Aw 06 0|, - "
3¢ ¢ =7 26 d P
o=-. ¢=n/2

Again, care must be taken to properly account for the change in sign of ue in the
symmetry plane ¢ = n/2.

The wall boundary conditions, in the plane 6 = 5 are handled as in the rest of
the flow field. Procedures for computations on the shock boundary are the same as
those used in the rest of the field although some terms in the equations must be
altered because of the coordinate singularity. These changes are included in the
discussion of the shock computations in appendix D.

Boundary Conditions

Wall boundary.- For inviscid flow, the wall boundary condition requires that the
velocity component normal to the wall be zero and that the surface entropy be con-
stant at the post-normal-shock condition. 1In addition, in the steady state, the
total enthalpy at every point in the flow field must be a constant.

The following procedure is used to satisfy these boundary conditions. The con-
tinuity and momentum equations are integrated along the surface. The computed wall
density and the constant wall entropy condition are used to determine the internal
energy and the pressure at the surface. Since, in general, the physical grid is not
normal to the body surface nor the cross-flow and axial components of the velocity
tangent to the body surface, the surface velocity boundary condition becomes
§b . ﬁb = 0, where in the spherical system,

V. =u- -+ u- o~ + e (13)
b - Y5, T Y8,0%5% T Ye,p%0

is the total velocity vector at the surface and ﬁb is the outer unit normal at the
wall, 1In general, the velocity vector V formed from the velocities determined by
integrgtinggthe momentum equations at the wall does not satisfy the tangency condi-
tion V,_ e = 0 and lies outside the surface tangent plane. To correct the total
velocity veggor at the wall so that it lies in the surface tangency plane, a scheme
similar to that outlined by Kutler (ref. 18) for use in a three-dimensional marching
code is used. Unlike Kutler, the computed thermodynamic properties at the wall are
assumed to be correct, and a set of surface velocities are sought which are con-
sistent with those thermodynamic properties and the specified wall velocity condi-
tion. Although the resulting wall properties are inconsistent at any instant in
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time, the solution at the wall converges as the global solution converges. For the
general case,

> A
Yo, T B (14)
where
1/2
q, = [2(Hw-h)] (15)
&
is the total velocity at the surface, V. is the corrected velocity vector on the

body surface which lies in the surface tahgent plane and

‘-; (6 Y )A
- L]
n b,0 bo * "b’"b
n, = — (16)
Ol - @ enon
Vb, 0 b,o - "o’"bl
+
is the unit vector in the surface tangency plane where Vb o is the computed veloc-
’

ity vector at the wall,

In the spherical system, the outer unit normal at the wall is given by

G X S -
7 % % Fsingap ¢
~ o _ (17)
n'b_ _ .2 _ 21/2
1+ 1 ab + __1_.613.
- 30 _— -
Iy r sin 6 0¢

By combining equations (13) to (17), the following expressions can bhe determined for
the velocity components at the surface:

D1
- = - - — 18a
ur,N qb ur,o D2 D3 ( )
u. =g lu. + 1 p D (18b)
o,N bl 8,0 b 20 3

b 2

D \af

u = + ! b D (18c)

$IN = 9y u$l° 3

Ebc>2 sin e/ 30

13




where

9,0 b Y%,0 b
D, = u- - -
1 r,o - 00 - -
r r sin 6 3¢
b
- - 2
or, 2 or.
D, =1 4|2 +——1?—(1-_' sin 0)
2 - 06 - b
rb d¢

or, [ _
+ UE),O + D1 6—6— (rbD2 sin 8)

In the cylindrical system, a similar analysis leads to the following expressions for
the surface velocity components:

D1
ur,N = qb<lur,o -.5;> D3 (19a)
brb
Soon = Ib[%,0 * D1 35| FuP2)| [ P (19b)

(19¢c)

[=}
N
-1

]

Q
/C"\
o

N
(o]

o
-

»

R| R

o

T——
o

{_/

o
w

where
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2 2 20\ 1/2

D 6rb arb
P3 = {{%r,0 ~ 3 1,0 Y P1 35 /TP | 96t Dy 57 /0,

Shock boundary.- The bow shock, which is the outer boundary of the flow field,
requires a time-dependent boundary condition, since the post-shock properties and
shock location are a function of the computational time increment. The details of
how the bow-shock boundary is handled in both coordinate systems are given in
appendix C. Briefly, the post-shock properties are determined by the post-shock
pressure and the local inclination of the shock to the free-stream velocity vector.
The post-shock pressure is taken to be the pressure at the shock location determined
by the integration of the flow-field equations. From this pressure and the shock
geometry, new post-shock conditions and a shock velocity can be determined. 1If
incremental movements of the shock are assumed to be small, then the change in radial
location of the shock can be written in the spherical system as

-

o

) = v, dt (20a)
and in the cylindrical system as

drs(ns ve.) =V, dt (20b)

A MacCormack scheme is used to integrate these equations to update the position of
the shock. At convergence, the computed post-shock pressure will give a zero shock
speed and thus a stationary shock wave.

Outflow boundary.- Computations are always carried to a point where the axial
flow at all grid points in the cross-flow plane is supersonic. We then integrate the
reqular interior point equations in the outflow plane by approximating axial deriva-
tives with two-point backward differences in both the predictor and corrector steps.

Smoothing function.- Historically, flow-field calculations, with the MacCormack
integration scheme, have required the addition of some damping to maintain numerical
stability; the HALIS code is no exception. We have chosen to use the fourth-order
smoother proposed by Barnwell (ref, 19). The smoothing is done on data in the compu-
tational plane and is applied at each time step after completion of the corrector
step. Because of CPU (central processing unit) storage considerations, the primitive
rather than conserved variables are smoothed; this has proven to be satisfactory.

The smoothing is formulated as follows in the spherical system:

4.t
gHHAL _ ptHAE a2 Z + (a2 s (amd 2t (21)

;]’ a), w ;]lalw bw - -
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The same equation holds in the cylindrical system when ¥ is substituted for w,
¢ for ¢, and n for 7.

The fourth-order derivatives are formulated by using regular five-point central
differences. In the n and 7 directions, at one point off the wall or shock,
third-order derivatives using four-point differences are substituted for the fourth-
order derivatives in equation (21). No damping is used in the 1 or 7 directions
at the wall or the shock. A third-order derivative is substituted for the fourth-
order § derivative in the next to the last plane in the cylindrical system whereas
no smoothing is applied in the § direction on the outflow plane. Barnwell
(ref. 19) has shown that 0 < € < 1/24. A value of ¢ of 0.025 has been found to
provide adequate damping without distorting the computed flow field.

Stability analysis.- A closed-form solution for the MacCormack differencing
scheme when applied to the three-dimensional Euler equations is very difficult, if
not impossible, to obtain. In appendix C, a rigorous derivation of the stability
criterion for the Brailovskaya differencing scheme is given. It is further shown
that under "worst-case" assumptions, stability for the MacCormack scheme reduces to
that of Brailovskaya. Thus, the stability criterion used in this work is based on
equation (C24).

At each point in the computational grid, the time integration is allowed. to
advance at its own local allowable time step. However, the streamwise distribution
of time step should be smooth at the juncture of the two coordinate systems. To
guarantee this smoothness, the magnitude of the local time steps in the spherical
system is adjusted within the limits of the stability criterion.

The following usual definition of the limiting time step is used:

1

I R —
| Max |

(22)

where Ama is the maximum eigenvalue occurring in the stability matrix. 1In the
spherical coordinate system,

1/2

2 2 2
A =g + a h + —f + ! (23)
max - - - - -
r r sin 6 (rS - rb) An
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where a 1is the local speed of sound and

dr _ dr u- 2u u-
- “'n)_})‘*"TS_;’; + © |+ ~ ¢__
0d 0¢ |r sin O nr Aw ®r sin ¢ A
dr dr
2 1 - b - ]
PTE et _;)A—E1’“)ae+“ae:|
s b n
dr dr
£ = 1- _(1_'1-.')-b+;] sl _ 1-
(r - rb) An 0¢ ¢ n AP

N 5 , 1 2 1/2
|)‘max| =g +ta (?) i [(rs -r,) An

where again a 1is the speed of sound and

g = ! u —mfi-E1-n)arb+nbr";]—ulg
(r g -r) Mr dt , Y) ¢ |r
or or u u
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or dr
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Further analysis indicates that the value of the smoothing coefficient used will
affect the magnitude of the allowable time step size. From this analysis, equa-
tion (22) is replaced with the following equation when determining the maximum
allowable local time step:

1/2
[1 - 96 + (1 + 192e)1/2]

\I'2'|xm

At <

ax]

Thermodynamics .~ For perfect gas computations, the pressure is computed by
using the state equation p = (y - 1)pe and the speed of sound from the equation
a2 = y(y - 1)e. A modified HALIS code has been written which incorporates
equilibrium-air chemistry. This version uses the equilibrium-air curve fits of
p = p(p,e) and a = a(p,e) done by Tannehill and Mugge (ref. 20). Some difficulty
with convergence can be experienced when using these curve fits because of slight
differences in thermodynamic properties at the juncture of fitted-curve segments.
This problem has been overcome by checking for discontinuities in the thermodynamic
properties at the juncture of fitted-curve segments and, where they exist, generating
a smooth transition from one curve segment to the next. To reduce computation time
when running this code, the nonvectorized chemistry code is called every 25th itera-
tion. In the interim, a local effective vy is used in computing the pressure. This
procedure keeps the time for equilibrium chemistry computations to approximately
20 percent greater than for a perfect gas.

Initialization

This method of solution, which is posed as an initial value problem, has
required the development of an initialization procedure for the flow field about a
complex three-dimensional geometry. In the following text, the flow initialization
procedure as currently used in the HALIS code is described and is the result of the

investigation of numerous initialization procedures for different parts of the flow
field.

Surface properties.- Starting from the stagnation point, the Newtonian pressure
on the surface is determined in the symmetry plane. On the leeside, the pressure is
only allowed to drop to six times the free-stream pressure., The multiple six has no
physical significance, but, using smaller values has, in some cases, led to negative
pressures on the leeside. Then, the meridional pressure distribution is set in each
plane by a sine function. Once the pressure distribution is set, an isentropic
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expansion from the stagnation point gives the density and internal energy on the
surface. The total velocity on the surface is then computed by assuming that the
total enthalpy remains constant throughout the flow. To split the total velocity
vector into its three components, the simplified streamline method of DeJarnette
(ref. 21) is used to determine the direction cosines of the streamline at a point on
the surface. Each component of velocity is then determined from the local total
velocity and the appropriate direction cosine., 1In addition, this procedure auto-
matically satisfies the surface boundary condition ¥ e ﬁb = Q.

Shock configuration and properties.~ As described previously, the bow shock
serves as the outer boundary of the coordinate system. We have found that it is
imperative that a reasonable guess be made of the initial shock shape, that is, that
the shock not be required to make large spatial adjustments. Initially, rotated
paraboloids were used as initial shock shapes; this works well for short bodies at
moderate angles of attack. However, this procedure breaks down for long bodies at
high angles of attack as the shock on the windward side of the body will intersect
the body surface.,

Currently, a segmented approach is used to determine an initial shock shape. 1In
reference to figure 7, the shock shape in the symmetry plane is broken into four
separate curve segments, A-B, B-C, C-D, and D-E.. Curve B-C is the locus of points
which are equidistant from the body surface when measured along a body normal. The
separation distance is the shock standoff distance, determined from the relation

(ref. 22)

0.78 -
8§ = r
S  pg/Pp N

Curve C-D is a parabola which matches the slope and position of curve B-C at 0 = 1.
The point of intersection of the curve C-D and the ray 6 = n/2, ¢ = w/2 is a vari-
able T, which depends on the angle of attack. Curve D-E is a straight line that
matches the slope and position of curve C-D at T; thus, the choice of T determines
the shape of the leeside shock. Curve A-B is a second-order curve which matches the
slope and position of curve B-C at 6 = §/2, ¢ = -n/2 and has a slope equal to the
body slope at z = Z ax+ 1In cross section, the shock shape is taken to be a circle
whose diameter is the distance between the shock in lower and upper symmetry planes.
Typical initial shock-shape cross sections are shown in fiqure 8 for several loca-
tions of =z, At first glance, this procedure appears very cumbersome, However, it
is easily automated and is only dependent on picking a reasonable value of T, which
for the specific geometry used in this paper varied from 85 inches to 140 inches over
angles of attack from 25° to 45°, Once the shock geometry is established, the same
procedure as outlined in appendix D for handling the unsteady shock wave can be used
to find the initial post-shock properties by using steady-state shock relationships
obtained by setting the shock velocity to zero in the relations of equations (D21),
(D22), and (D23).

Interior grid points.- The interior grid points are initialized by first forming
the conserved quantities W, W, and W, as defined in appendixes A and B, along the
shock and wall and then determining the values at the interior nodes by linear inter-
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polation. The primitive variables are then separated from the conserved quantities
and the pressure at each node is defined from the thermodynamic relation

p = plp,e) (26)

HALIS configuration and operational statistics.- The requirements on grid
resolution and the CYBER 203 CPU memory size limit the extent of the modified Space
Shuttle geometry (fig. 5(b)), which can be modeled in the present HALIS code, These
restraints limit the modeling to the first 650 inches, which represents approximately
50 percent of the vehicle length measured from the nose to the body flap hinge
line. 1In figure 6, each plane has 11 points in the 1 direction (distance between
body and shock) and 32 points in the ¢ (meridional) direction., There are a total
of 90 planes in the streamwise direction, the first 15 in the ¢ (or 6) direction
in the spherical system and the rest in the § (or =z) direction in the cylindrical
system. Thus, the computational grid contains 31 680 grid points. The code requires
that 22 variables be stored at each grid point., These variables include the old and
new values of the flow-field variables, the physical coordinates, the local time
step, and the smoothing variables. These storage requirements along with other stor-
age needs and the associated computer code require all the CYBER 203 central memory
of 10° 64-bit words. 1In its present form, the code will generate converged solutions
in 700 to 1500 global iterations for angles of attack from 20° to 45°. This corre-
sponds to CPU time ranging from 2200 to 4500 seconds. A solution is considered to be
converged when every point in the flow field meets the following criterion:

t+At
PP (107t (27)

Y

The HALIS code has a built-in restart capability which allows unconverged solutions
to be continued or new solutions to be started from previously converged solutions.
Using an old, converged solution to start a new one reduces by 10 to 15 percent the
number of iterations required for convergence.

RESULTS AND DISCUSSION
Surface Boundary Conditions

The surface boundary condition plays an important role in the development of the
subsonic axial flow along the windward surface. Some authors (refs. 3 and 9) have
avoided the subsonic flow problem by using solution techniques which do not directly
impose one of the surface boundary conditions, namely that of constant surface
entropy. Allowing the surface entropy to take on a value determined by integration
of the flow-field equations, in general, leads to a surface entropy lower than that
required by the constant entropy condition. This effect is illustrated in fig-
ure 9(a) where center-line surface entropy is plotted as a function of Shuttle
vehicle length for a constant and variable surface entropy condition, The lower
surface entropy values in turn produce higher values of axial Mach number (fig. 9(b))
but leave the surface pressure distribution unaltered (fig. 9(c)). Thus, it would
appear that, if surface pressures are the only required product, computations may be
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made by using a variable surface entropy. However, not imposing the constant wall
entropy boundary condition will alter the distribution of flow variables through the
shock layer. These altered distributions make such computed flow fields incompatible
with three-dimensional and quasi-three-dimensional boundary-layer codes which rely on
the solutions from inviscid flow-field codes for boundary-layer edge conditions. The
extent to which these distributions are altered is shown in figure 10 where variable
distributions through the shock layer at z/L = 0.1, 0.25, and 0.45 on the windward
symmetry plane center line are shown for a HALIS computation of a flow field about
the shuttle vehicle at M_ = 10.3 and a« = 25°. Figure 10(a) is an entropy plot for
both the case of a constant and variable wall entropy. Differences between the two
solutions increase with increasing 2z/L, with these differences confined to the lower
third of the shock layer. 1In fact, at 2z/L = 0.1 the solutions are virtually the
same. Figures 10(b) and 10(c) show plots of wu,, the axial component of velocity,
and the density. The results are similar to those seen in the entropy plot. Fig-
ure 10(d) is a pressure plot which shows that the different entropy boundary
conditions have no effect on the pressure distribution through the shock layer at all
three axial locations. 1In figure 11, plots similar to those shown in figure 10 are
presented for HALIS computations of flow over the Shuttle vehicle at M_ = 10.3 and
a = 45°, PFigures 10 and 11 show that differences between constant wall entropy and
variable wall entropy are more pronounced at the higher angle of attack. These dif-
ferences between the two solutions extend to the lower one-half of the shock layer

at z/L = 0.45 for all three variables: s (fig. 11(a)), u, (fig. 11(b)), and p
(fig. 11(c)). However, in fiqure 11(d) the pressure distribution through the shock
layer is unaltered by the choice of wall entropy boundary condition,

Surface Axial Mach Number

when the proper surface boundary conditions are applied, the area of the wind-
ward surface having a subsonic axial velocity component should increase with angle of
attack until the axial velocity component over the entire windward surface is sub-
sonic as illustrated in figure 1 for the high-angle-of-attack case. Since the HALIS
code requires a supersonic outflow boundary, it was necessary to alter the modified
Shuttle geometry to include a slight expansion region aft of the 650-inch plane to
raise the surface axial Mach number to a supersonic value,

In fiqure 12, the windward-surface center-line axial Mach number distributions
are shown for angles of attack between 25° and 45° and a free-stream Mach number of
10.3. According to these results, if an initial data plane were established at
z = 150 inches, then a spatial marching code such as STEIN (ref. 7) should be able to
compute the flow over the vehicle at angles of attack up to 40°. However, practical
experience with the STEIN code has shown that it is impractical and/or impossible to
march into flows where M, approaches 1. To determine, for this body and free-
stream Mach number, what the limiting angle of attack for a STEIN solution would be,
the HALIS code was used to establish an initial data plane at 2z = 150 inches.
Complete STEIN solutions over the first 650 inches of the vehicle were obtained for
angles of attack of 25°, 30°, and 35°. Center-line axial Mach numbers from STEIN
solutions at a = 25°, 30°, and 35° are plotted at 100-inch increments in figure 12
and agree with the complete HALIS solutions at the same angles of attack. For
a = 40°, the STEIN solution failed after the first step away from the initial
supersonic data plane., A broader view of how the subsonic axial Mach number region
spreads over the windward surface with increasing angle of attack can be found by
comparing the parts of figure 13, which is a three-dimensional representation of the
vehicle geometry being used with the physical grid superimposed on a black body. The
white part of the vehicle surface represents the area of subsonic surface axial flow
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and the black part represents the supersonic surface axial flow. The expansion
region appended to the geometry can be seen at the aft end of the vehicle, At an
angle of attack of 40°, a region of subsonic axial flow appears along the strake of
the unmodified vehicle (fig. 5(a)), which appears as a chine along the modified
vehicle. This subsonic axial flow is the result of the large expansion about this
region at the higher angles of attack and the turning of the flow toward the upper
symmetry plane which accompanies the expansion. At a = 42.5°, there are three
regions of subsonic flow: the region from the stagnation point aft, the region about
the strake, and the region near the aft end of the vehicle., This last region near
the aft end of the vehicle is the result of the flow recompressing after it has
expanded down the vehicle from the stagnation point. At an angle of attack of 45°,
the axial flow over the entire windward surface is subsonic.

Code Validation

To validate the HALIS code for flow about complex three-dimensional shapes, flow
about a modified Shuttle vehicle at angle of attack has been computed at a condition
for which there exist experimental data as well as numerical results from a different
computer code. The numerical results were generated using the STEIN code (ref. 7),
whereas the experimental data (ref. 23) were obtained in the Ames 3,5-Foot Hypersonic
Wind Tunnel. 1In figure 14(a), a comparison is shown of numerical and experimental
surface pressure coefficients on the windward center line plotted against nondimen-
sional body length for an angle of attack of 25° and a free-stream Mach number of
10.29. The comparison between all four sets of data is excellent. 1In fact, the two
numerical methods give almost the same results. This is interesting since both
methods have the same resolution in the radial and meridional directions but the
STEIN code has an axial resolution approximately eight times greater than the HALIS
code., A further comparison of the experimental and numerical results for this case
is shown in figure 14(b) where meridional distributions of surface pressure coeffi-
cients are plotted for three different axial locations on the vehicle. The numerical
data are only plotted to approximately the tip of the vehicle strake since the geom-
etry used in the computations has been modified (fig. 5(b)). There is good agreement
between experimental data and both sets of numerical results for off-axis points,
Figures 15 to 18 are similar plots of HALIS and wind-tunnel data for angles of attack
from 30° to 45°, 1In all figures, there is very good agreement between the experi-
mental data and the HALIS results,

Real Gas Computation

A comparison of perfect-gas (y = 1.4) and real-gas computations for a M_ = 18
point on a typical Shuttle entry trajectory is shown in figures 19 and 20. A plot of
center-line pressure coefficients is shown in figure 19, Real-gas effects are most
prominent in the stagnation region and downstream, where the recompression is weaker
than that shown for the perfect-gas case. Meridional pressure coefficient distribu-
tions for both the real- and perfect-gas cases at increasing values of z/L are’
shown in figure 20.

CONCLUDING REMARKS
In this paper, a computer code HALIS, designed to compute the three-dimensional
flow about Shuttle-like configurations at angles of attack greater than 25°, has been
described in detail. Results from HALIS have been compared where possible with an

22




existing flow-field code; such comparisons have shown excellent agreement, Also,
HALIS results have been compared with experimental pressure distributions on Shuttle
models over a wide range of angle of attack. These comparisons have again been
excellent. It has also been demonstrated that the HALIS code can incorporate egui-
librium air chemistry in flow-field computations.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 10, 1983
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APPENDIX A

GENERAL TRANSFORMED EULER EQUATIONS

In this appendix the components of the Euler equations in both the spherical and
cylindrical coordinate systems are identified. As well, the development of the
transformed equations in the respective coordinate systems is presented.

Spherical System

In reference 24, the viscous compressible three-dimensional Navier-Stokes equa-
tions in conservative form are listed for a set of generalized coordinates., From
these equations with the appropriate coordinates, metric coefficients, and zero vis-
cosity, the compressible three-dimensional Euler equations in spherical coordinates
can be written in vector form as

oW dF oG ., OH , =
_— t — + +—+0=0 (A1)
ot - 08 -

or 00

where W, F, G, H, and é are defined as

W=|r pu, sin 6 (A2a)
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Here, E 1is defined as p[% +-%(u; + ua + uéi], and p = P(p,e).

The transformation from spherical to computational coordinates
(tr;r C_br 8) » (E,ﬁ':b,w)

is based on the following definitions:
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APPENDIX A

with equations (A3) and the chain rule of partial differentiation, the derivative
terms in the governing equations can be written in terms of derivatives in the com-
putational space as

‘ - 3
3 _omd
dr dr 97
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The derivatives, found in equations (aAd), of the computational coordinates with
respect to the physical coordinates are determined by using equations (A3) and are
given as follows:
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APPENDIX A
By replacing the partial derivatives in equation (A1) by their respective representa-

tion in the transformed space equations (egs. (B4)), the equations to be solved on
the computational grid can be written as follows:

26 B a<t>';+Q=0 (A6)

The vectors ﬁ, §, E, ﬁ, and é are unaffected by the transformation and the
velocities are still defined in the spherical coordinate system which means that they
are not necessarily aligned with any grid lines in the computational space,

Cylindrical System

From reference 24, the inviscid compressible three-dimensional FEuler equations
in cylindrical coordinates are written as

oW OF . OH oG

A TR (a7)
where W, F, H, G, and Q are defined as

rp
Y pu

W =
rpu¢ (A8a)

rpu

F = rpuru¢ (A8Db)
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1,2 2
Again, E = p[} +-§(ur + ui + uzi], and p = p(p,e). The transformation in the

cylindrical system is similar to that in the spherical system where now we have

(tlrl¢lz) > (EIT]:(IJ,E)

along with the definitions
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Again, the derivatives in the governing equations can be written as follows in terms
of the derivatives in the computational space:
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As before, the derivatives in equations (A10) can be determined from equations (A9)
and are listed as follows:

b [ 2
e = ~|Fg ~Tigg * (r - gl - ) f (a11)

Equation (A7) can be transformed to computational space by replacing the partial
derivatives with equations (A10) to take on the following form:

ﬂ+_b_ﬂ_aﬂ+éﬂ J.g +_T_1 +_Q‘k@+_§aG+Q=O

— 3t on T or on T 20 2z on T B¢ 00 | Bz oF (a12)

Again, as in the spherical system, the wvectors W, F, H, G, and Q are unaffected
by the transformation to computational space, and the velocity components are still
defined in the cylindrical system.
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EULER EQUATIONS FOR 6 = 1

The Fuler equations in the spherical coordinate system, as defined by equa-
tion (A1), are singular along the ray 6 = . To obtain a set of equations valid
along this ray, the following procedure has been used. First, equation (A1) is
differentiated with respect to 6 and then 1lim 6 » m 1is taken which results in the
following set of equations:

Continuity:
a<-2 a(-2 ) 5 - 2 .
Frats p) + —(r puz) + 2 Sg(rpue) _(rpu$) =0 (Bla)
or 06 3¢
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0 momentum:
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Also, E = ple + ylup + ug + uy and p =p(p,e).

Equations (B1) are valid along a line in space defined by 6 = n. However, this
line actually represents a spatial plane. In dealing with the flow about 6 = g, the
procedures outlined by Barnwell (ref., 19) are followed. For each value of Y along
the line, the thermodynamic properties are constant for all values of § as is the
T component of velocity. However, the @ and ¢ components of velocity will have
to exhibit some dependence on § as illustrated in the following sketch:
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In the sketch, we show a ¢,6
superimposed uniform positive velocity V.
following conditions apply:

ue=V and u$=0 (5=‘§)
ue=0 and u7¢=Vw (¢=O)
ue = —V°° and u$ = 0 (5 ='g)

These conditions will always apply along 6 = 1

at this location and lead to the following expressions for

tion of ¢:
u, = -u sin 6
6 ) =-1/2
u= = u cos 6
¢ e'$=-1t/2

since

r

is not a
u and

8

The form of equations (B1) can be simplified if we choose to solve
in the symmetry plane and then distribute the properties about the

function of ¢. In the symmetry plane,

eliminates the need to integrate equation (Bilc).

equations in the vector form
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when the derivative definitions (eqs. (A4)) are substituted into equation (B3), the
following equation, valid in the computational space, is generated:

—_+ h—
st O ar or om 00 om 00 Bw
SRR AR ()
an “\op an 2% 2%

Now ¥ and ¥ _ are not functions of § on 6 = g. Therefore, 3dn/d¢p is zero on
O = n; this simplifies equation (B5) to
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APPENDIX C

STABILITY ANALYSIS

M. J. Hamilton
Sperry Systems Management
Hampton, Virginia

Symbols
A matrix of linearized coefficients of hyperbolic system
a local speed of sound
B coefficient matrixes for Euler equations in general coordinates
Cp specific heat at constant pressure
<, specific heat at constant volume
D weighted superposition of A matrixes used to simplify form of G
D, superposition of A matrixes used to simplify form of Gm
e specific internal energy
F coefficient functions of hyperbolic system
E F evaluated at mesh nodes using G
G amplification matrix for Brailovskaya's scheme
Gp amplification matrix for MacCormack's scheme
g, abbreviations for quantities appearing frequently in amplification matrix
for Euler equations in general coordinates
1 identity matrix
i,j,n, %,k indices
k independent variable in frequency domain
P similarity transform for Euler equations
q arbitrary positive integer
S set of all eigenvalues of D
t time
U dependent variable of hyperbolic system
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U approximation to U at mesh nodes from predictor step of Brailovskaya's
schenme

u,v,w Cartesian velocities for perfect gas

A amplitude of Fourier transform component

X5 Cartesian coordinates

Y3 independent variables of hyperbolic system

« wavelength associated with given wave number and mesh spacing, aj = k., Ay,

Y ratio of specific heats, cp/cv

A abbreviation used for terms in amplification matrix

A arbitrary eigenvalue of D

p density of perfect gas

T right-hand limit of time interval within which entries of G are uniformly
bounded

General Analysis

In this appendix the vVon Neumann type stability criterion for hyperbolic equa-
tions in general coordinates is discussed, 2An explicit linearized stability cri-
terion is given for application of Brailovskaya's finite-difference method (ref. C1)
to the Euler equations. The resultant criterion is also shown to be necessary for
MacCormack's method (ref. C2). Finally, the effect of "artificial viscosity"” terms
on the stability is computed.

Consider the hyperbolic system

oF,
i

o _
3}(_._0 (c1)

t
i=1
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where U(y1,...,yn,t) and Fi(U) are g-dimensional vectors, and (y ,...,yn) repre-—
sents the chosen nonsingular coordinates. Brailovskaya's finite-difference scheme
for equation (C1) is a two-step predictor-corrector method with centered differences.
Applied to equation (C1), the predictor step is

n F; . . . - F; . . .
I,3,1'1+1 _ Gn _AEZ 1311--013}‘+1r--°13n 13110.-132_110"1311 (c2)
j ,oou,j j ’ooo'j 2 Ay
1 1 -1 L
and the corrector step is
~H1 ~n-1
n FX . . . - F2 . . .
n+1 n At ’J“"'.’jl'f'“’...']n '31,000,31_1,01-,311
U. . = U, . TS A (C3)
31'...'31’1 J1r-°°ljn YJL
2=1
As usual,
o = u(j, A j_Ay_,nAt)
j ,...'j - 31 y1IOOOIJn yn'
1 n
Let
ij
A, = —
J U
be treated as constant at each time level., We then apply the usual von Neumann
analysis (ref. C3) to the linearized system
n
U
%* E AJ.-%%—-: 0 (c4)
3=1 ]
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Let U(k,t) denote the Fourier transform of U{y,t), and let aj = kj ij. Set

n

u’ =" exp|i E i a (c5)
]1rv¢'rJn L7
2=1

Together, equations (C2) through (C5) give

+1
ot (C6)

with the amplification matrix

2
G=I-D -1iD (C?7)
where
n .
A, sin a.

D = At E 2 J (c8)

Ay.

3=1 ?

Let the set of eigenvalues of D be denoted by S. From equation (C7), the
Von Neumann criterion becomes

|Al <1 for all AESs (C9)

The scheme of MacCormack does not have the symmetry of the method of Brailovskaya.
Because of this, the expression for the amplification matrix of MacCormack's scheme
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analogous to equation (C7) is not simple. The MacCormack amplification matrix Gm
becomes

n 2 n 2
A At AkA.(At)
- - - L. S - -
Cp=1+ Ay, (cos g = 1) 2: 2 Ay, Ay L(cos @y = 1(cos ay - 1)
k=1 k,j=1 J
n 2
(AKA. - AR ) (At)
+ sin sin a, | + E l__J [sin @ (cos a, - 1)
% 3 2 Ayk Ay. ]
krj=1 J
k<j
n .
Ak sin o
- sin a,(cos @ - 1) J(1 + i) - i At E ——— (c10)
J B =7
k=1 k
If we assume =n, with kX =1, 2, ..., n, the MacCormack problem becomes
tractable; this is equivalent to assuming alternating signs for the perturbation
terms at adjacent mesh nodes, 1In this case, we find
2
G =1- 2(D ) (C11)
m m
where
— A
D_ = At —_— (C12)
m Ayk

k=1

If S now denotes the eigenvalues of Dm, we again find our Von Neumann criterion as
in equation (C9).
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Application to Euler BEquations

In Cartesian coordinates, with U = (p,u,v,w,e)T, the linearized Euler equations
for a perfect gas may be written in the form of equation (C4), where

u 0 0 0 0
(y - Y)e/p u 0 0 y -1
A, = 0 0 u 0 0 (C13a)
0 0 0 u 0
| 0 {(y = 1e 0 0 u |
v 0 o} 0 0 B
0 v 0 0 0
Ay, = |y - 1e/p 0 v 0 y -1 (C13b)
0 0] 0 v 0
0 -
| o (y - e 0 v |
W 0 0 o 0]
0] w 0] 0 0
Ag = 0 0 w 0 0] (C13¢c)
(y - 1)e/p o] 0 w y - 1
0 0 0 (y - Ve W
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Here op, (u,v,w), and
energy, respectively.
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e denote the density, Cartesian velocity, and internal

For computational tractability, we diagonalize

denote the local speed of sound, and define P as
i 2 2]
~p/e 0 0 py/a -py/a
0 1 0 0 0
P 0 0 0 Y/a Y/a
0 0 1 0 0]
1 0 0 1 -1
Then the similarity transform A_ = P-1A2P gives
A_ = diag(v,v,v,v+a,v-a)
For this transformation,
u 0 0 0 0—
0] u 0 Y -y
1'\1 0 0 u 0 0
2
0 a“/2y 0 u 0
0 -a2/2y 0 0 u
e -
\ 0 o] 0 0—
0 w 0 0 o]
A 0 0 w Y Y
0 0 a2/2y W 0
0 0 -a2/2y 0 w
L _

A2. let a

(c14)

—
(¢}
—
wm

(c16a)

(C16b)
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Now transform to general coordinates. let (x1,x2,x3) be Cartesian;

Yy = yxfx.,t), a nonsingular transformation, In the new coordinates, the linearized
Euler equation becomes

3

du du

‘5{*2:53-&,—,-0 (c17)
3=1 ?

with

23 Ov; by

Bj = AR'SEZ + I EE— (c18)
2=1

The results of the section "General Analysis" then hold for equation (C17), with

3 .
B, sin «a,
D = At _S_ S . (C19)
Ay,

3=1 ’

Let ajl denote the Jacobian matrix byj/axx, and perform the similarity trans-

formation D = P-1DP. Make the further definitions

sin aj byj

g = At —ny—— (uaj1 + vaj2 + waj3 +-5E— (Cc20)

j=1

3 .
sin (!l

B. = At a,, ———— (C21)
;| Z 23 Ay,

=1
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Combining equations (C15) through (C21) gives

g 0 0 0 o |
0 9 0 Y8, -YB,
D=|o0 0 g Y85 -YB4 (c22)
0 a2p, /2y a’g,/2y 0
0 -a®p,/2y -a%gy/2y g - a8,

A straightforward calculation now gives for the eigenvalues of D

3, o 32
s=la 9 9 9g+ald; B g-2ald B (C23)

\ yi=r - vi=to 7

If the entries of G are uniformly bounded on an interval 0 < At € g, and at
most one eigenvalue in S has |A| = 1, equation (C9) is sufficient for linearized
stability (ref. C3). Since the entries of G are comprised of density, velocity,
energy, and Jacobian terms, they should be bounded away from coordinate singulari-
ties; this is assumed to be the case. Then from equation (C23) we arrive at the
condition

3 0y
At Z u(ﬁ1 + Vajz + Wai3 6t
Ay.
j=1 )
3 2 3
a. a. + . + a.
+a E —A;k + 2 E l 31 % ij2zl;2 33%: | <1 (Cc24)
. j . j Tk
3, k=1 J,k=1
j<k

For Cartesian coordinates, equation (C24) becomes the well-known

lul vl dwl 1 1,1

<

At = + = + A + a > + > 5 (C25)
1 2 3 V
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In comparing equations (C24) and (C25), we note

dy..
k]
dt

jul 1
—— has been replaced b _—
Ax P Y ij

contravariant velocity components

(1)

; thus, stability depends upon the

(2) for an orthogonal transformation, the term under the square root in equa-

2
. . E 1 . .
tion (C24) is <Mesh spacings) , a@as in equation (C25)

For MacCormack's scheme, recall the special case of equation (C11). In this
case, the preceding development holds, with D being replaced by Dm (eq. (C12)).
One finds equation (C24) again necessary for stability.

For arbitrary phase, the computational intractability of G, (eq. (C10)) makes
it difficult to establish a general result or worst case., Computational experience
seems to support the use of equation (C24) for MacCormack's scheme as well as for the
more rigorously justified Brailovskaya case.

Artificial Viscosity Effects

From equations (C10) and (C11), it is clear that Brailovskaya's method is not
dissipative, If sin a, = 0 for all values of j or for any frequency if D has
eigenvalues of O (in fluid dynamics, this will occur near stagnation or sonic
points), then G has eigenvalues of 1., This is prevented by adding smoothing or

damping terms to equation (C6). A fourth-order term often chosen in fluid mechanics
is

n
-XI _;_ o . . - au” . o+ eu” .
l=1 ]1"."],Q,+2'.."]n 31'...’32;"1’...’]1'] j1yo.oljn
- 4 + (C26)

j1,¢¢.,j2_1,-.-,jn j‘l,...’j,q_—z"..,jn

where Xk 1is the adjustable artificial viscosity coefficient., With this choice,
equation (C10) becomes

G = IA-D% - iD (c27)
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where

n
A=1 -2 z: (cos 2aj - 4 cos aj + 3) (c28)
3=1

Equation (C9) now becomes
[(a - )2 + a%] <1 (C29)
This requires

A" < (C30)

Let )\ denote the eigenvalues of D as before, with K1 At = A. Then equa-
tion (C29) gives

20 - 1 + (5 - an) /2

C31
> (C31)

5N e N

our reasoning thus far is general: if equation (C26) is replaced by another
damping term, equations (C27), (C29), (c30), and (C31) still hold, with equa-
tion (C28) modified appropriately. Bguation (C30) restricts the choice of k. For a
given k, equation (C31) then restricts our time step., For k = 0, equation (C31)
reduces to equation {(C9). Bguations (C28) and (C30) give the requirement

i 0 <k <§H (C32)

A restriction of the form of equation (C32) is known for other difference
schemes (ref. C4). Bdditional restrictions of the form of equation (C31) do not
appear to be widely recognized, Figure Ci shows Atlx ' as a function of k
for the choice (eq. (C26)) with n = 2 or 3. 1 max
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C2.

c3.

c4.
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CALCULATION OF PROPERTIES AT SHOCK WAVE

The shock velocity and other flow properties on the downstream side of the shock
wave are calculated from the downstream pressure pg by using a general three-
dimensional extension of the axisymmetric method discussed in reference 24., The
first step in the procedure is to resolve the velocity at the shock wave into an
orthogonal shock-oriented system with components normal and tangent to the shock wave
as illustrated in sketch A.

Shock wave

Sketch A

The next step is to compute the shock velocity and other flow properties at the shock
(see sketch A) from the normal-shock-wave relations treating the downstream pressure
Pg and the normal velocity component in the free stream as known quantities. The
values of Pg used in this step of the procedure are obtained from the finite-
difference solution of the flow-field equations at the shock. The final step is to
resolve the velocity at the shock into the components in the coordinate system being
used to make the flow computations. Since the details of the procedure are dependent
on the coordinate system employed, the procedure will first be described for the
spherical coordinate system used in the nose region and then for the cylindrical
coordinate system used downstream.
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Spherical Coordinate System

In spherical coordinates, the shock wave can be described by an equation of the
form

Fs(r,e,¢) =r -~ rs(9,¢) =0 {D1)

where fs(e,$) is the radial distance to a discrete set of points which define the
shock. The outer unit normal to the shock surface is given by the expression

ng = VFS/|VFSI (D2)

-~
Thus for spherical coordinates, ng becomes

-
A ~ 1 Ts\» 1 s|a
n = |e= - |———]e, - e-l|G (D3)
s r kE 9 |'® \7 sin 6 a&) ¢J/ n
s s
where
-\ 2 -\2
1 6rs 1 brs
G =41+ — + (D4)
n - 06 - . -
r r sin 6 93¢
s s
Now a unit vector € is chosen such that it is tangent to the shock wave and the

curve formed by the intersection of the shock wave and the plane ¢ = Constant. Such
a unit vector is given by the expression

tyy = —O2/00 (D5)
| 3T/ 30|

where the vector r is defined as follows:

T =T.(6,0e, (D6)
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Thus,
= {==2le + G (D7)
ts1 20 /°r *s®o t
where
-\ 2
brs _ 2
= rvs + D8
Gt 00 Ts (D8)
Now a second unit vector t tangent to the shock and perpendicular to both ﬁs

and €s1 can be obtained from the vector cross product of ﬁs and Es1

tsp = Dg X tgy (D9)

~

With equations (D3) and (D7), the following result is obtained for tso

. dor dr dr
" _ 1 s é_ _ S 1 S é

2 i - -
s sin © 5% r 00 T sin 0 3% 0

- 1 ars A
—— -)l(¢c
+ r + - 20 e¢ ( nGt) (D10)
s
Now these three unit vectors ﬁs' 251, and t defined by equations (D3), (D7),

and (D10) can be written in the following short“form

ns = Nf ef + Neee + N$ ea (D11)
‘l:51 = T‘\f ez + T.‘eee + T."& e$ {(D12)
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tSZ = Tzf ef + Tzeee + T2<l> 85 (D13)
where

N = 1/Gn (D14a)
1 a;s

No === 20 |/®n (D14b)
S

] aEs
N= = -~ — |G (D14c)
¢ r sin 6 3¢ n

_.’i
b
I
Sl @
@ U)%’l
~J2
@
o+

(D144)
Tio = Ts/C¢ (D14e)
T‘E =0 (D14f)
or
T - = ! /e 6, (D14qg)
2r sin 8 _= nt 9
' 06
{ - -
| (ar;> ; brs
1 T, o=~ (G_G,) (D14h)
» 28 09 r sin 0 ol nt
‘ -\2
: = 1 6rs .
‘ TZE = 1T +‘E—G§;> (GnGt) (D141)
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Note that for the special case of 9 =g and 9§ = £n/2, N-, Tzf' T26'
reduce to the following limiting forms: ¢

The free-stream velocity in spherical coordinates is

V- e- + V e . + V- e-
® r,or 6,2 0 o, ¢

<¢
0

where
.> s : I3 -
V- = |V |(sin « sin 6 sin ¢ + cos a cos 0)
r,® @©
-> a . < .
v = |V |(sin « cos 6 sin ¢ - cos a sin 8)
B, » @
> . -
V$’m = lvw| sin a cos ¢
The free-stream velocity component normal to the shock wave V o 1S
’
v =V en_ =N V= +NV N
n,o ™ s r r,» 6 6, + 6 VE,,m

and the free-stream velocity components tangent to the shock wave V

tl,®
are

<
]
<¥
.
o+

i

t1,® © s1 = T1E V;’cn + T19Velw + T16 d),‘”

and

t2,0 = Vo " 52 T T2F VF,e * T2g%0,0 * T2j Vi,

54

and Gn

(D15)

(D16)

(D17a)

{(D17b)

(D17¢c)

and V

(D18)

t2,x

(D19)

(D20)
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Although, the tangential components of velocity Ve and Vg are unchanged across
the shock wave, the other properties illustrated in sketch B change and must be

Shock wave

v
S
v v
n,® n,s
;r —————
P, Py
Pon Pg
hoo hS
eoo es

Sketch B

computed from the following normal-shock-wave relations for a moving shock:

- = - (D21)
s (vn, ® Vs) Ps (Vn, s vs)
p_+ p |V -V =p +p (V -V2 (D22)
@ @ n,«e S s S n,s S
2
(v -V )2 (v -V )
h o+ S h RS = (D23)
® 2 s 2
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or, since p_ =1, equations (D21) and (D22) become

(Vn’m - vs) = ps<vn's - vs> (D24)
n,® n,s

2 o \2
p_ + (v - vs) =p, * o, (v vs> (D25)

Now, rearranging equation (D25) results in the following equation:

2
- = - - D
p_ - P, (vn'w vs) 1 - p S (D26)
( n,® S)
Combining this equation with equation (D24) and solving for (vn -V )2 gives the
following equation: ! S
) S
vV o -V )2 == = (D27)
n, o s 1 -1/p
s
Similarly, egquation (D23) becomes
2
h =h +l(v -v)21-1— (D28)
s © 2\ n,» s pS
Equations (D27) and (D28) can be combined with an equation of state in the form
p = pxh (D29)
to yield the following result:
1 2h _ + (ps - pP.) (530}
P (2pg/¥) = (pg - p,)
where for an ideal gas
K = =X-1 (D31)

P_
ph Y
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and for a real gas, «k is evaluated from p, p, and h at the previous time step

t-At
K = (%H) (D32)

Equation (D32) is a good approximation of the value of k at the early time steps

and it becomes more and more "exact" as the solution approaches convergence., This

process eliminates the need to iterate the shock-wave relations by using the "real-
gas subroutines" and, thus, speeds up the solution considerably. With equa-

tion (D30), equation (D27) can be solved to obtain the following equation for the
shock velocity VS:

\ \Y 25 " Pe (D33)
s n,@ 1 -1/p
s
Then use this result in eguation (D24) to obtain Vi, g as
’
v o _=l(v -v)+v (D34)
n,s P n,® s s

The enthalpy hs can then be computed from equation (D28) and eg from the relation

Pg
e =h - — {D35)
s s o)
s
The free-stream velocity components in the spherical coordinates V; o’ ve o’
14 [4
and V$r° can be transformed to shock-oriented velocity components Vn,w’ Vt1,m'
and Vt2 - by using the transformation matrix A
r
— —— P —
a1 a2 a3 Tqz T19 T13
A= = |7 - - ;
221 222 223 or T20 2% (P36)
234 232 233 Nz Ng N3
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as follows:

— -
V;’ m—l Vt1 ,mj
- D37
A Ve'm Vt2,® ( )
V- v

This same transformation matrix can be applied to conditions behind the shock wave;
thus,

_ - _ -
u;,s Vt1,s
A ug sl = Vt2,s (D38)
hu-(f),s Lvn,s i
where
vt1's = vt1'm (D39a)
Vt2,s = Vtz,oo (D3%b)

The spherical velocity components downstream of the shock wave can be determined from
equation (D38) as follows:

“?,J Vt1,s_|
-1
= A (D40)
ue,s Vt2,s
- \'4
"% | ™S
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where Af1

is the inverse of the

in the general form

where |a|

alj

element
|Al

and

11
12
a
13
21
22
A
23
A
31
32

33

is the determinant of the matrix
.« For a spherical coordinate system we can Wwrite

Adj A =-—T|A

]
Al [T12

T,2(%26% = Top No)

T N--T

20 o 20 6
-T2 N$ + T2$ N-
Tor Mo~ Tag'r
TioN%

T %

-T -« N, + T, N=-
ir

T1672%

~T - T
T1r

1r 2

8

2%

19 r

- T T -

8

19 2r
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transformation matrix A.

- T1e(T2£

31

32

33

N& - Tz&

A and Aij

N;)

can be written

(D41)

is the cofactor of the

(D42)

(D43a)

(D43b)

(D43c)

(D434d)

(D43e)

(D43f)

(D43qg)

(D43h)

(D43i)
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Now from equations (D40) and (D41), the spherical velocity components downstream of
the shock are obtained as follows:

1

“r,s T A|(A11Vt1,s FRrVea,s A31Vn,s) (D44)
1

U,s = Tal(P12%¢1,s * P22Vea,s * P32 n,s) (D45)
1

s = TAl + + AV

“os |A|(A13Vt1,s A23Vea,s * P33 n,s) (D46)

Cylindrical Coordinate System
In cylindrical coordinates, the shock wave can be described by an equation of
the form
F (r,¢,2) = - ¢ (¢,2) (D47)
s s
In a procedure similar to that used with the spherical coordinate system, three unit
vectors related to the shock wave are defined.

The first, ﬁs, is the outer unit vector to the shock wave and is defined by

Ng = Ne€p + Nglg + Nyl (D48)
where
| Nr = 1/Gn (D49a)
N = o[ s G (D49b)
o r_ d¢ n
ars
Nz = oz Gn (D49c)
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and

1 ar \2 or_ 2
G = 1+ |l—==] +|== (D50)

The second, ts1’ is the unit vector tangent to the shock wave and the curve
formed by the intersection of the shock and the plane ¢ = Constant and is defined

by
€51 = Tipép + Ty ¢é¢ + Tiz8y (D51)
where
for \
T1r = \%32 Gt (D52a)
I o (D52c)
1z 1/Gt ¢
and
2
| iy
G = —= D5
. \ %2 + 1 (D53)
The thirg, gle is a unit vector perpendicular to both pg and tgq and is
defined by
tSZ = Tzrér + T2¢é¢ + TZZgZ (D54)
where
v = (1 s (G_G.)
or T N Gt {D55a)
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H
|
-—

+
NN
SR
[44]
~—

[\
(]
=]
@
o+

2¢

-) A ~ A
vV =V e + V + Vv e
-] r,®r ¢,co¢ Z,® Z
where
—’ . s
\Y = 1V ! sin a sin ¢
r,® @
[V,| s
V¢'m = Vm sin a cos ¢
>
v o= |V ] cos a
z,® -]

The free-stream velocity component normal to the shock wave is given

+
v =V en =NV + NV + NV
n, o o S Y r,® ¢ ¢, Z Z,°

and the velocity components tangent to the shock wave are given by

T, V + + \Y
t1,x ® s1 1r r,» T1¢V¢,m T1z z,®
and

-) ~
\Y =V ot =T,V + T,V + T,V
t2,= ® s2 2r r,» 2¢ ¢,> 2z z,®

Now the tangential components of velocity are unaffected by the shock

t1,s tl,

t2,s t2, o
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wave ;

{D55b)

(D55c)

(D56)

(D57a)

(D57b)

(D57c)

{D58)

(D59)

(D60)

thus,

(D61a)

(D61b)
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The velocity V. and other properties on the downstream side of the shock wave
(sketch B) are cbmputed by using equations (D23) through (D35) in exactly the same

way as for the spherical coordinate system described previously.,

Similarly, the cylindrical velocity components on the downstream side of the
shock wave are computed from the equations

1

- — D
U,s T TAaT(P11Ver,s * 221Ve2,s * 231", s) (p62)
1
Yo, IAI( 12V¢1,s * 222Ve2,s A32Vn,s) (D63)
" A,V +A__V + A__V (D64)
Yz, T IAI( 13°t1,s © 23 t2,s © 733 n,s)
where
= - + - T_ N D65
|2 T1r(T2¢Nz T2zN¢) T1z(T2rN¢ 2¢ r) ( )
and
A, = T N (D66a)

11 = Ttz = Tagly

A12 = —Terz + Tzer {D66b)
Ay = Ter¢ - T2¢Nr (D66C)
Ay, = T1ZN¢ (D664Q)
Ryy = ToNs = T12Y (D66e)
A23 = —T1rN¢ (D66F)
Ay, = —T1ZT2¢ (D66g)
B3p = TyeToy * TipTor (D66h)
Ry = T1rT2¢ (D66i)

63



10.

1.

12.

13.

64

REFERENCES

Hamilton, H. Harris, II: Calculation of Laminar Heating Rates on Three-
Dimensional Confiqurations Using the Axisymmetric Analogue. NASA TP-1698,
1980.

Moretti, Gino; and Bleich, Gary: Three-Dimensional Flow Around Blunt Bodies.
AIAA J., vol. 5, no. 9, Sept. 1967, pp. 1557-1562.

Rizzi, Arthur W.; and Inouye, Mamoru: Time-Split Finite-Volume Method for Three-
Dimensional Blunt-Body Flow. AIAA J., vol, 11, no. 11, Nov. 1973,
ppo 1478"14850

Hall, DParryl W.: Calculation of Inviscid Supersonic Flow Over Ablated Nosetips.
AIAA Paper 79-0342, Jan. 1979,

Pulliam, Thomas H.; and Steger, Joseph L.: Implicit Finite-Difference Simula-
tions of Three-Dimensional Compressible Flow, AIAA J., vol. 18, no. 2, Feb.
1980, pp. 159-167.

Marconi, F.; and Salas, M.: Computation of Three Dimensional Flows About
aircraft Confiqurations, Comput. & Fluids, vol. 1, no. 2, June 1973,
pp. 185-195,

Marconi, Frank; Yaeger, Larry; and Hamilton, H. Harris: Computation of High-
Speed Inviscid Flows About Real Configurations. Aerodynamic Analyses Requiring
Advanced Computers - Part II, NASA SP-347, pp. 1411-1455.

Kutler, P.; Reinhardt, W. A.; and Warming, R. F.: Multishocked, Three-
Dimensional Supersonic Flowfields With Real Gas Effects. AIAA J., vol. 11,
no. 5, May 1973, pp. 657-664,

Rizzi, A. W.; Klazius, A.; and MacCormack, R. W.: A Generalized Hyperbolic
Marching Technique for Three-Dimensional Supersonic Flow With Shocks.
Proceedings of Fourth International Conference on Numerical Methods in Fluid
Mechanics, Volume 35 of Lecture Notes in Physics, Robert D. Richtmyer, ed.,
Springer-Verlag, 1975, pp. 341-346.

Weilmuenster, K. James; and Howser, Lona M.: Solution of a Large Hydrodynamic
Problem Using the STAR-100 Computer. NASA TM X-~73904, 1976.

Weilmuenster, K. James; and Hamilton, H. Harris, II: A Method for Computation of
Inviscid Three-Dimensional Flow Over Blunt Bodies Having Large Embedded
Subsonic Regions. AIAA-81-1203, June 1981,

Weilmuenster, X. James; and Hamilton, H. Harris, II: A Comparison of Computed
Space Shuttle Orbiter Surface Pressures With Flight Measurements.
AIAA-82-0937, June 1982,

vachris, Alfred F., Jr.; and Yaeger, Larry S.: QUICK-GEOMETRY - A Rapid Response
Method for Mathematically Modeling Configuration Geometry. Applications of
Computer Graphics in Engineering, NASA SP-390, 1975, pp. 49-73.




14.

15.

16.

17.

18,

19.

20,

21,

22.

23,

24,

Helms, Vernon Talmadge, III: Flow Angle and Mass Flow Rate Measurements in the
Leeside Flow Field of a Space Shuttle Configuration. M.S. Thesis, The George
Washington Univ,., Nov. 1977,

Lambiotte, Jules J., Jr.: Effect of Virtual Memory on Efficient Solution of Two
Model Problems, NASA T X-3512, 1977,

MacCormack, Robert W.: The Effect of Viscosity in Hypervelocity Impact Crater-
ing. AIAA Paper No. 69-354, Apr.-May 1969.

Abbett, Michael J.: Boundary Condition Computational Procedures for Inviscid,
Supersonic Steady Flow Field Calculations. Rept. 71-41 (Contract NAS2-6341),
Aerotherm Corp., Nov. 30, 1971. (Available as NASA CR-114446.)

Kutler, Paul: Computation of Three-Dimensional, Inviscid Supersonic Flows.
Progress in Numerical Fluid Dynamics, Volume 41 of Lecture Notes in Physics,
H. J. Wirz, ed., Springer-vVerlag, 1975, pp. 287-374.

Barnwell, Richard W.: A Time-Dependent Method for Calculating Supersonic Angle-
of~-Attack Flow About Axisymmetric Blunt Bodies With Sharp Shoulders and Smooth

Nonaxisymmetric Blunt Bodies., WNASA TN D-6283, 1971,

Tannehill, J. C.; and Mugge, P. H.: Improved Curve Fits for the Thermodynamic
Properties of Equilibrium Air Suitable for Numerical Computation Using Time-
Dependent or Shock-Capturing Methods., NASA CR-2470, 1974.

DeJarnette, Fred R.: Calculation of Inviscid Surface Streamlines and Heat
Transfer on Shuttle Type Configurations. Pt. I.,- Description of Basic Method.

Contract No. NAS1-10277, North Carolina State Univ., 1971. (Available as NASA
CR-111921,)

Seiff, Alvin: Recent Information on Hypersonic Flow Fields. Proceedings of the
NASA-University Conference on the Science and Technology of Space Exploration,
Volume 2, NASA SP-11, 1962, pp. 269-282. (Also available as NASA SP-24.)

Dye, W. H.; and‘Polek, T.: Results of Pressure Distribution Tests of a
0.010-Scale Space Shuttle Orbiter Model (61-0) in the NASA/ARC 3.5-Foot
Hypersonic Wind Tunnel (Test OH38), NASA CR~144584, vols. 1-3, 1975,

Weilmuenster, K. James; and Hamilton, H, Harris, II: A Hybridized Method for

Computing High-Reynolds-Number Hypersonic Flow About Blunt Bodies. NASA
TP-1497, 1979.

65



M<1

Moo > 1 M> 1
M>1
Moderate angle of attack High angle of attack

Figure 1.- External flow fields for super/hypersonic flight regime.
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Figure 2.- Physical coordinate system.
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Figure 4.- Space Shuttle orbiter geometry.

(a) Complete geometry. (b) Modified geometry.

Figure 5.- QUICK geometry models.
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Figure 6.- Data-base configuration.

o=-n/ 2
z=0

Figure 7.- Bow shock initializations. Symmetry plane.
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Profile view Cross sectionatz="50in.
Cross sectionatz=350in. Cross section at z =650 in.
Figure 8.- Initial shock shapes. M_ = 10.3; a = 25°,
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(b) Surface axial Mach number.

Figure 9,- Center-line surface distribution of flow variables as function of
vehicle axial length for constant and variable entropy wall boundary

conditions. M_ = 10.3; a = 25°,
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Figure 9.- Concluded.
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(b) Axial velocity distributions.

Figure 10.- Distribution of flow variables through shock layer in windward symmetry

- plane at axial locations 2z/L of 0.1, 0.25, and 0.45 for constant and variable
entropy wall boundary conditions. M_ = 10.3; a = 25°,
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(c) Density distribution.
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(d) Pressure distribution.

Figure 10.- Concluded.
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(b) axial velocity distributions.
Figure 11.- Distribution of flow variables through shock layer in windward symmetry

plane at axial locations z/L of 0.1, 0.25, and 0.45 for constant and variable
wall boundary conditions. M, = 10.3; o = 45°,
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Figure 11.- Concluded.
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Figure 12,- Windward-surface center-line axial Mach number distribution. Mm =
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Figure 13.- Surface axial Mach number distribution.
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Figure 14.- Comparison of experimental and calculated pressure distributions at
M_=10.29 and a = 25°.
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(b) Meridional pressure coefficients.

Figure 16.- Comparison of experimental and calculated pressure distributions at
M, =10.29 and a = 35°,
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(b) Meridional pressure coefficients.

Figure 17.- Comparison of experimental and calculated pressure distributions at
M = 10.29 and a = 40°.
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Figure 18.- Comparison of experimental and calculated pressure distributions at
M, = 10.29 and a = 45°.
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Figure 19.- Windward center-line pressure coefficient distributions.
M, = 18; a = 40°,

85



p 1.0

z/L=0.0375

1.5

z/L=0.075

ZiL=10.3

0

-T2

y =1.4

————Equilibrium air

z/[L = 0.45

— v— ——
e e — -

-Tl2

Figure 20.- Meridional pressure coefficient distributions.

86

M

©

a =

40°.




1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TP-2103
4. Title and Subtitle 5. Report Date
CALCULATIONS OF INVISCID FLOW OVER SHUTTLE-LIKE May 1983
VEHICLES AT HIGH ANGLES OF ATTACK AND COMPARISONS 6. Performing Organization Code
WITH EXPERIMENTAL DATA 506-51-13-03
7. Author{s) 8. Performing Organization Report No.
K. James Weilmuenster and H. Harris Hamilton II 1~15518
10. Work Unit No.
9. Performing Organization Name and Address
NASA Langley Research Center 11, Contract or Grant No.
Hampton, VA 23665
13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Paper
Natl?nal Aeronautics and Space Administration 14, Sponsoring Agency Code
Washington, DC 20546
15. Supplementary Notes
Appendix C by M. J. Hamilton, Sperry Systems Management, Hampton, Virginia.
16. Abstract
In this paper a computer code HALIS, designed to compute the three-dimensional flow
about Shuttle-like configurations at angles of attack greater than 25°, has been
described in detail. Results from HALIS have been compared where possible with an
existing flow-field code; such comparisons have shown excellent agreement. Also,
HALIS results have been compared with experimental pressure distributions on Shuttle
models over a wide range of angle of attack. These comparisons have again been
excellent., It has also been demonstrated that the HALIS code can incorporate egui-
librium air chemistry in flow-field computations.
17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Computational fluid dynamics Unclassified - Unlimited
Supersonic flow
High angle of attack
Shuttle
Three-dimensional inviscid flow Subject Category 34
19. Security Classif. (of this report)« 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified 89 A0S

For sale by the National Technical Information Service, Springfield, Virginia 22161 NASA-Langley, 1983




