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VISCOUS COMPRESSIBLE FLOW ABOUT BLUNT BODIES USING
A NUMERICALLY GENERATED ORTHOGONAL COORDINATE SYSTEM

R. A. Graves, Jr. and H. H. Hamilton II
Langley Research Center

SUMMARY

A numerical solution to the Navier-Stokes equations is obtained for
blunt axisymmetric entry bodies of arbitrary shape in supersonic flow. These
equations are solved on a finite-difference mesh obtained from a simple
numerical technique which generates orthogonal coordinates between arbitrary
boundaries. The governing equations are solved in time-dependent form using
Stetter's improved stability three-step predictor-corrector method. For the
present application, the metric coefficients were obtained numerically using
_fourth-order-accurate, finite-difference relations and proved to be totally =
reliable for the highly stretched mesh used to resolve the thin viscous
boundary layer. Solutions are obtained for a range of blunt-body nose shapes
including concavities. Results indicate that the numerically generated
coordinate system performed exceptionally well and no problems were encountered
in the coupling of the numerical coordinate generator and the fluid dynamic
equations.

INTRODUCTION

One of the major problems retarding the rapid development of computa-
tional fluid dynamics for complex geometries has been the difficulty of
generating the finite-difference mesh. Much effort has been expended to
develop coordinate transformations and/or mesh generators for varying degrees
of geometric complexity (see refs. 1-5 for representative examples). For
viscous flow over blunted bodies, such as planetary entry vehicles, the
boundary conditions on the body and the large gradients adjacent to the
surface must be represented accurately by the finite-difference approximations
to the Navier-Stokes equations. Toward this goal, almost all numerical solu-
tions to the Navier-Stokes equations to date for blunt-body flows have used
body geometries conducive to use with natural or nearly orthogonal coordinate
systems.

In the natural coordinate system, the body surface itself forms one
boundary, i.e. the body contour coincides with a constant coordinate line.
Typical examples of this approach are a cylindrical coordinate system to
describe flow over a cylinder, a spherical coordinate system to describe flow
over a sphere, and a parabolic coordinate system to describe the flow over a
paraboloidal body. Reference 6 gives a representative use of a natural
coordinate system for the numerical solution of a fluid flow problem. In the
natural coordinate system, the normal coordinates intersect the body orthog-
onally,. thus simplifying the boundary conditions. There is little difficulty
in compressing the mesh near the body because the computational mesh system
is composed of lines parallel to the body which can be concentrated as close
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to the body as desired. There is, however, one rather severe restriction on
the natural coordinate system; that is, the body must have an analytic shape.
Unfortunately, most planetary entry vehicles bear little resemblance to the
limited number of natural coordinate systems available.

Another option is similar to the natural coordinate system in that the
body surface becomes one coordinate line in the system. This is called the
body-oriented coordinate system. In this system, the coordinates of a point
are determined by the distance along a body surface measured from the axis of
symmetry and the distance along a normal to the body. This type of system
has been used to describe the flow over the forebody portions of blunt entry
bodies; references 7-9 give some representative examples. Although this
system has received wide use, it does suffer from several major deficiencies,
one of the most serious of which is that it cannot handle body shapes with
concavities (ref. 10).

Both conformal (ref. 5) and near-conformal mapping (ref. 4) have been
used to generate coordinate meshes about complicated geometric shapes; however,
these techniques are mathematically complicated and generally require multiple
transformation steps leading to a loss of physical reality in the computational
plane. Such complications make finite-difference mesh setups difficult and
the computer codes generally are not easily applied/converted to general shapes.

Recently, reference 11 presented an application of a simple numerical
coordinate generator (ref. 12) to blunt-body shapes. This technique allows
for the numerical generation of general orthogonal coordinate systems about a
wide range of body geometries. In this technique, the body can be represented
by a series of discrete (but continuous) points rather than by an analytical
approximation, and in the transformed computational plane, the region of
interest is rectangular with the body surface being a coordinate line. This
representation combines the advantages of the natural coordinate system and
the body-oriented coordinate system. An additional advantage is that the
coordinates are generated in the physical plane, which simplifies the finite-
difference mesh setup. This technique was used in a time-dependent solution
procedure for inviscid flow over blunt bodies (ref. 13). The use of the time-
dependent solution procedure, where the moving shock wave was the outer-
coordinate boundary, required that the coordinate system be regenerated at the
end of each time step. This coupling of the fluid dynamics and the coordinate
system worked very well for a large number of test cases. However, this
application was for inviscid flow only and the finite-difference meshes were
nearly equally spaced.

The present analysis uses the coordinate generation technique (ref. 11)
along with the time-dependent solution concepts (ref. 13) to obtain solutions
to the full Navier-Stokes equations for viscous compressible flow over blunt
bodies. The emphasis is on obtaining fluid-flow solutions for blunt bodies
of varying nose shapes (complexity) where the mesh must be highly compressed
to resolve the viscous boundary layer.




SYMBOLS

ay,ag forebody shape coefficients

Cl,C2 Sutherland's viscosity coefficients
Cp specific heat

E average error

f arbitrary function

F arbitrary vector function

h static enthalpy

hi,j metrical coefficients

hy.hy hz, transformed coordinate metrics
J 7))

i ¢ direction index

I total intervais in ¢ direction

j n direction index

J total intervals in n direction

K. spacing parameter

M Mach number

N . unequal spacing coordinate parameter

Npr Prandtl number

NRe Reynolds number

P pressure

q nondimensional heat transfer, q = ﬁ/ﬁwVi
RN nose radius, m

T local distance between body surface and outer boundary
T, radius of body surface

S1 cotangent of body angle at tangency point

t nondimensional time, t = t \-/m/RN




=2

T nondimensional temperature, T = f Ep /Vm
I

U arbitrary vector

u nondimensional tangential velocity, u = &/Ow

\') . free-stream velocity, m/s

Sy nondimensional normal Velocity; ?Yﬂ: ??ng

v nondimensional normal velocity, V = V/vw

X,Y Cartesian coordinates

SX,SY . shock location in Cartesian coordinates

yA axial coordinate

a arbitrary parameter in Stetter's method

B shock angle

Y ratio of specific heats

€ convergence criteria

n transformed normal coordinate

es body-surface angle (see fig. 1)

8, local angle (see fig. 1)

eC cone angle

u nondimensional viscosity, u = u/u_

g transformed tangential coordinate

0 nondimensional density, p = p/p_

) radial distance (see fig. 5)

o damping coefficient

Superscripts:

- dimensional values

Subscripts:

o free-stream quantities




METHOD OF ANALYSIS
Coordinate System

The numerically generated orthogonal coordinates will be determined from
the original X,Y coordinate system's description of the body surface and
shock wave. Taking the origin of the X,Y system as lying inside the body
to be described, the surface distance &, which forms one of the transformed
orthogonal coordinates, can be calculated by defining £ as zero on the -X
axis (fig. 1) and increasing to unity at the end of the forebody surface.

Thus & 1is given by
% F(‘h‘s )2 1172
/f s *|\a5, de

£_) =° -
S - 21/2

S dr
jl i < 5)
T do
5y s T[\ds

+

eyl 2,1/2
where T, = (Xs + YS)
reference 13, the shock wave is taken as the outer boundary of the transformed
coordinate system. On the outer boundary, n =1 while on the body surface,

n = 0. The level lines between the outer boundary, shock wave, and the body
surface can be constructed along straight lines connecting corresponding
points on the body and shock. Note that the mesh points on the outer boundary
are not the final mesh points, but initial values used only to set up the

level lines. The actual mesh points will result from the numerical generation
of the orthogonal normal lines. The spacing of the level lines is arbitrary;
however, for viscous flows, the boundary layer must be resolved and the unequal
‘spacing relation of reference 14 can be easily applied,

and 0 = cos'l(-xs/rs). As in the analysis of

K Nj/AN -1

N, = o

ik 1/MN 1
c

J
parameter (generally 1 < K. < 2). The larger the spacing parameter K., the

where Nj'= (j-1)AN and N, = 1., with AN = 1/(J-1) and Kc being the spacing

more unequal the spacing. Using'the unequal spacing relation, the level lines
between all corresponding points on the body and shock can be calculated. The
relationships for the corresponding values of X,Y can be obtained (see fig. 1
for geometrical schematic) from

_ 2 2.1/2
1,i - [(Xn=1 h Xn=0)i ' (Yn=1 Yn=0)i]
Xl,J = Xi,n o * (njrlgi)cos 91

i,5 7 Vim0 ¥ (71,0 G




where
. -1 '
61 = sin [(Yi,ﬂ=1 - Yi,n=0)/r1,i]'

Figure 2 shows the level lines constructed in this manner for a spherically
capped conical body with K. = 1.01, which gives nearly equal spacing.

Once the level lines have been determined, the normal lines are
constructed numerically so that an orthogonal system is defined. The approach
to the construction of the normal lines is the one given in reference 12
which uses a simple "predictor-corrector" technique analogous to the
trapezoidal integration method of numerical integration. In this technique,
the solution is first predicted from the level line at a known point by using
the Euler method. Once the predicted point on the next level line is
obtained, the slope at that point is calculated and a new predicted point is
obtained using this slope. The actual solution is then a combination of these
two solutions, i.e. the final X,Y values are an average of the predicted
and corrected ones. This procedure is illustrated in figure 3. Starting on
the body, the solution proceeds point by point along a level line until all
normals on that level have been constructed. Then the solution proceeds to
the next level and the process is continued until the outer boundary shock
is reached. Figure 4 shows a typical orthogonal coordinate mesh constructed
about a spherically capped conical body.

-~

Coordinate Metrics

Once the coordinate system is constructed, then the X,Y location of all
mesh points is known and using the coordinate system depicted in figure 5, the
metric coefficients can be determined using the nomenclature of reference 15.

1 1 A
u =n X = p cos ¢
u2 = x2 = p sin ¢
u3 =9 x3 =z

Note that 8 = 8 (£,n) and

N

= z(&,n). The metric coefficients are obtained

- from

nooaxbaxd e ax® | ax® ax®
23 out sud sut su!d dut au?
h h h

1,2 72,1° 71,3 73,1°
all have to be zero, leaving only the three familiar coefficients

For an orthogonal system, the metric coefficients h

h2,3’ and h

hl, h2’ h

3,2
3.




When the derivatives in the metric coefficient relation are taken, the following
metric coefficient expressions are obtained:

h

"§§_2- 9z.2
(Bn) + (gﬁ

1,1

hyp = hy = 358 * 5%
hy,3=h3,=0

hy , = C7 + b2

hy 3=h35=0

hy 3= 5

With the choice of the present coordinate system, two of the three necessary
orthogonality conditions are identically satisfied, leaving only the h1 2
H

coefficient, which was shown in reference 11 to be negligible for the present
application. Thus, only the three necessary metrics are left:

=2
!

- 1897 + §HHH/?

h, = D% + Gph'?

hy = D

Since the computational plane (§,n) is an equally spaced rectangular region

(see fig. 6), the derivatives in the above metric coefficient relations can

be evaluated using equally spaced, central finite differences. For the

present analysis, fourth-order-accurate relations (ref. 16) are used in place

of simpler second-order-accurate finite differences in order to produce smoothly
varying metric coefficients adjacent to the stagnation line. These fourth-order-
accurate metric coefficients proved to be totally satisfactory for the present
analysis even in the regions of high-mesh stretching/compression.

Governing Equations

The equations used in the present analysis are the full unsteady Navier-
Stokes equations in general orthogonal coordinates for laminar viscous flow
as given by reference 17. These equations in nondimensional form are:

p =..E_.3p v 9p p du p ov

Pl iy . —— - — - e e w4 rm—— t——
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_pu 93
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hohs 9n 13
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The axis of symmetry, stagnation line, is a singular line in the computational
domain because h3 =0 and u =0 along the axis. The limiting forms are:
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5h
L2 _2 du 1 9v 1 1 1 39 ( 3)
Vevs % Thyon VY |Eh, * —5h. o \3E

In addition to the above conservation equations, an equation of state and a
viscosity law must be specified. For a perfect gas, the equation of state
can be given by

Y-1
. = —2 5h
P Y P

and Sutherland's viscosity equation is used in the form

T3/2
= C
H 1 C2 + T

to determine the molecular (laminar) viscosity.

Boundary Conditions

Along the body surface for the present analysis, the following conditions
are imposed: ' :

e
]

0 (no slip)

v=20 (no blowing)

=2
]

hw (constant wall temperature)

dp = }
dn>N 0, Pi1 {<4Pi,2 pi,3> /3]

Because the flow analysis is in the unsteady form, both the flow properties and
shock velocity have to be specified at the upper boundary. This is accomplished
using a modified form of the Rankine-Hugoniot relations, a complete development
of which can be found in reference 13. In order to apply these relations, the
pressure immediately behind the shock has to be calculated using only
quantities interior to the computational region. This calculation is

performed using the continuity equation, energy equation, and equation of

state with the appropriate derivatives in these equations being expressed by
backward finite differences. Once the shock velocity is obtained at each

mesh point along the shock, the shock position is determined from the

solution of the following equations:

dsxi S
rraie Vi cos (/2 - B)
dSYi s
—a—f—‘= - Vi sin (‘ﬂ'/2 - B) 11



The flow conditions along the outflow boundary are obtained using the follow-

ing second-order-accurate extrapolation relation for equally spaced data
(ref. 7):

) 2
= (20£; | - 6f, , - 4f; .+ £, ,)/11 + 0(AE")

Numerical Method of Solution

Because of the necessity of recalculating the orthogonal coordinate
system at each time step (due to the shock movement), it is imperative that
the overall solution converge as rapidly as possible to minimize the
additional work. For this reason, Stetter's method (ref. 18) is chosen as
the method of solution, for it has been demonstrated (refs. 19 and 20) to
have an expanded region of stability which allows for a more rapid marching
to steady state. In Stetter's three-step predictor-corrector method, the
derivatives in the governing equations are expressed as second-order finite
differences so that the overall solution is of second-order accuracy in the
space dimensions. Since the steady-state solution is the desired end
product, the dp/dt term in the energy equation is dropped (refs. 7 and 9)
and thus temporal accuracy is not maintained.

In order to facilitate the use of Stetter's method, the governing
equations are recast in the following simplified form:

Q

U

FE
p
‘u
U=4v and F represents the righthand side of the
h appropriate equation.
5x
Sy

The three-step process becomes:

(0)N+1 _ N N
i Ui,j + Atk Fi,j (step 1)
(DN+1 _ (N Ati (0)pN+1 N
Ui,j T Uiy T CF vy (step 2)
(2) N+1 N Ati (1) N+1 N
=U. . + — F. + F. . step 3
i,j i,] 7 1,] 1,3) (step 3)
U§+; + (1) N+; + (1 -a) (2) N ; (parameterization)

12




After the parameterization step, a damping (or smoothing) of.the solution
is performed to prevent oscillations in the flow from destroylng the solution
process. This damping is the fourth-order procedure given in reference 21
and used quite successfully in references 9 and 10.

Because of the large variation in grid spacing used in the present
analysis, the local maximum time step based on the CFL condition could not
be used as was done in reference 20. Instead, a local minimum time step was
found along each £ = constant line and then the time step was defined as

At. = 2.4 | Min (At . :
t [zij <J ( CEL, ) )] i=constant

This time step proved entirely satisfactory for the range of body shapes
given in the present analysis.

The orthogonal coordinate system was numerically generated at.the end
of each full time step while at the end of steps 1 and 2, only the shock
position and related metrics were calculated. This is the same procedure
used in reference 13 where a wide variety of inviscid blunt-body flow fields _
were calculated. Note that in the present study, no attempt was made to optimize
the fluid dynamic/orthogonal coordinate calculation procedure.

The solution procedure was assumed to be converged (at steadyistate)

when the average error was less than the convergence criteria. The average
error is defined as

I1-1J-1 | N+1 _ N
N
! N
i=1 j=2 Pi,j

(1-1) (J-2)

Thus, the solution is converged when

E<e

where € is a small value on the order of 10_6.

RESULTS AND DISCUSSION

The present analysis was used to calculate the flow over a 45° hyperboloid
using the test conditions given in table 1. The computational grid was a
15 x 31 mesh with a spacing parameter K. = 1.2 in the n direction, which
gives a highly compressed mesh adjacent to the body surface. The spacing
parameter for the & direction was K. = 1.15, which gave a slight
compression in the stagnation region and a stretching of the mesh toward the
outflow boundary. The calculated pressure and heat-transfer distributions
are given in figures 7 and 8 where an excellent comparison with two other
computational solutions is seen. The present analysis had no difficulty in
handling this analytic body with its smooth variation in surface curvature.

13



The body-oriented coordinate system which has received very wide use_
because of its simplicity suffers several serious deficiencies, one of the
more serious of which is that for bodies with a curvature discontinuity, such
as spherically capped cones, there results a singularity in the governing
equations. This problem can be circumvented by making the discontinuity
point a special case (ref. 22) where special derivative relations are
applied. However, the present numerically generated coordinate system does
not suffer the same problem and this was amply demonstrated for inviscid flow
(ref. 13) where solutions for a number of curvature discontinuous bodies were
obtained for a wide range of conditions. Using the present analysis, the
flow over a 45° spherically capped conical body was calculated using the
condition of table 1. The computed heat-transfer distribution is plotted
in figure 9 along with both experimental and computational results. Again,
the comparisons are very good and the present analysis had no difficulty in
handling the surface curvature discontinuity.

A more rigorous demonstration of the capabilities of the numerical
orthogonal coordinate generator can be seen on bodies with increasing nose
bluntness, including those with reverse curvature. A family of bodies having
these properties will be generated using the following cubic forebody
generator:

_ 2 3
X = Xo + azY + a3Y
where
I TV b
2 Y12 1 o} 3
a, = (s, - 2a,Y,)/3Y 2
3 1 271 1
s = 1
1 tan ec
| X1 = 0.5
Y1 =1
8 = 40°
c

The forebody joins smoothly to the conical afterbody with the surface
angle specified by ec. Figure 10 gives the forebody shapes as a function

of X, and these five shapes represent the range of shapes that could be

expected for planetary entry bodies experiencing severe ablation in the
stagnation region (ref. 23). Using the conditions of table 1, but with

o = 0.003, the flow fields about the five body shapes were computed. The
pressure and heat-transfer distributions are given in figures 11 and 12 where
the effect of nose blunting is readily apparent. Also, the representative
effects of blunting on shock and sonic-line shape can be seen in figures 13-15.

14




A representative converged coordinate mesh is given in figure 16 for the
XO = 0.4 body. Note the highly compressed mesh near the body surface which

was necessary to resolve the boundary layer. All these results obtained
with the present analysis are excellent with no noted undesirable flow-field/
coordinate system coupling effects. Part of the success of the present
analysis is due to the smooth metric coefficients produced by the fourth-
order differencing. Table 2 gives the metric coefficients at two locations
for the X = 0.4 case and these results are typical of all the solutions

obtained with the present analysis.

CONCLUDING REMARKS

The use of numerically generated orthogonal coordinates in compressible
viscous-flow solutions to the Navier-Stokes equations is both practical
and desirable. The technique has been demonstrated for a range of blunt-
body shapes and the use of numerically evaluated metric coefficients has
been successfully demonstrated. Although the present analysis had a moving
boundary which necessitated recalculating the coordinate system at each step
of the flow calculation, the technique should find easy application in
static coordinate situations.
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TABLE 1.- COMPUTATIONAL TEST CONDITIONS

¥, = 10.33

Y =1.4

P_ = 100.77 N/u’
T = 4§.26° K

- o
ATV = 330.6 K
RN = 0.03175 n

Ng, = 115600 -
€= 2.5 X 10‘6
¢ = 0.001

Npr = 0.7




~ TABLE 2.- METRIC COEFFICIENTS _

(a) Tangential Direction Variations

1 2 3

0 1.0k27 .00861 0
.0T1k 1.10k42 .00851 .07T56
.1428 1.2241 .00818 .1578
.2143 1.3472 .00765 2hT1
.2857 1.4831 .00693 .3hh7
.35T1 1.6337 .00608 L4528
.14286 1.7970 .00522 .57h0
.5000 1.9680 .00461 .7076
.5T1h 2.1608 .00L58 .83hh
.6428 2.3878 .00525 L9687
.T1h3 2.6284 .00626 1.0847
.T857 2.8881 .00706 1.2112
.8571 3.1767 .00763 1.350L
.9286 3.hokh .00800 1.5035
1.0000 3.8438 .00821 1.6718




TABLE 2.- METRIC COEFFICIENTS (CONCLUDED)

(b) Normal Direction Variations

E= .357T1
n h, h, h3
0 1.6329 .00249 4529
.0333 1.6331 .00311 1529
L0667 1.6332 .00389 L1529
.1000 1.6334 .00L486. . 1529
.1333 1.6337 .00608 L4529
L1667 1.6340 .00759 1528
.2000 1.6344 ".009k49 L1528 ¢
.2333 1.6349 .01187 527
2667 1.6355 .01L85 4526
.3000 1.6363 .01856 . 525
.3333 1.6373 .02321 .us2h
.3267 1.6385 .02902 .h522
.kooo 1.6k401 .03629 .4520
.1333 1.6k20 .04539 L1518
58T 1.6u44Y .05679 . 1515
.5000 1.647h .0T7105 512
.5333 1.6512 .08891 4507
5667 1.6559 11129 .h502
.6000 1.6617 .13933 .Lkhos
.6333 1.6690 .17k RANGE
L6667 1.6781 .21862 LT
. 7000 1.6894 .27398 .1h65
.7333 1.7035 .34349 .hhs3
.T66T 1.7210 .43075 .1h38
.8000 1.7427 .54021 o2
.8333 1.7696 .67729 ko7
L8667 1.8028 .84839 L1395
.9000 1.8L433 1.0607Th L4380
.9333 1.8923 1.32181 4328
L9667 1.9503 1.63776 32
1.0000 2.016h4 2.01539 . 1509

S T v e R

20

T A

ST i TV Y T T i e o e e et s -

7P 5. e WA,




e

SN

~J

1C
>

E‘ﬁﬂ.

BODY SURFACE

Fig, 1 Flow-field geometrical relationships,






€c

SLOPE AT THIS POINT USED:
TO GENERATE SECOND
PREDICTED NORMAL

FINAL NORMAL ——
ORTHOGONAL LINK ‘

UPPER LEVEL—>
LINE

Fig. 3 Normal line construction technique.







€
Xl
A
3
AN 7
., z | =X’

14

~

X2
AN

Fig, 5 YGeome’trical relationships for metrical coefficients,



9z

STAGNATION

AE

LINE ——>=

SHOCK— R N
i
AN
A
~=— QUTFLOW
BOUNDARY
339599 97N U R S R RRRRRRRRAR NN

Z—-'BODY SURFACE

Fig..6 Computational mash.



s R D e,

¢.+.!~-.Lw. PRSI BEN i

i BN
o e

IR

e pan
Ay

RO S
-
4- B
h :
et

o~ :
Lo 1
=== o
m G - 0. v g
; o b 1ad e W
L. L. .. e ———e .
b 02 Lai iy - B :
il b S = ! i
ey ™ o -
. od S L
P i m i
—— ...t : e | e -
| SR ! : e i
. : . : e :
O S L 1 N :
P - ]- - ke Il. 4 . (.”
i O i
T 4. H
) l H :
e e b e i
. SR J ,.M
- L ! ! ‘
. < . .2
o o ,_ e Y ]
,....n 3 n- e [ERERE .
_ N T I b N
..... HI i —_— . " H

for a 45° hyperboloid.

ions

7 Computed pressure distributi

Fig




‘
. *
o o
M ..

i
|
i
i

N .
RENCE 7

e b e e
L i
¢

1
ot
.
B
1
+

§ i
R
A REF

j-- ,<..~:...v.
1

——PRESENT
| E

Chee e

t
——ieen '.!..‘.;..E. —

1.2.

.0

1
SIR

0.6

0.2

) O
Y : ;
t o i L
SRR, -t e S
R R . . “
BN s J e rre = 4 -~ 9
: ri-=d R
N : T SC U UE SNSRI

28

Fig. 8 Computed heat distributions for a 45° hyperbolo



62

......

S PRESENT

TS [RereRENCE 9 Lo

4 TEXPERIMENTAL REbULTS

REFERENCE J.

AR
B . .. . Y T YT T
RN P I H A S LN i
an ..>‘--.<..1 ................. Rl L I,
AR B Lo TRV N i
B ":';' v -. |- s : ' :
!

i _O 4 F“O 6 N " Of.8 n i ]

Fig. 9 Comparison of heat-transfer distributions for a 45° sphere cone.



0¢

40°

Fig. 10 Forebody shapes as a function of X,.



Ie

SIR

Fig. 11 Effect of nose blunting on the pressure distribution.



32

1
. e -
. ¢
H i . -
¢ ' H . e
' I P07 S D
; : .
' ‘ { i - ;
e - e - Iy
] ! N
: ¢ : ' :
oy e e
¢ H i
+ — - . -t s - -
. . :

Fig. 12 Effect of nose blunting on

17 L6 20 2.4
SIR

the heat-transfer distribution.







SONIC LINE

" 34




e




ACLERLER AR R R T R R TR
) ORNIRRRANRNY ,ﬂ;,,.,/ AR ,//,////u N /V,/u///,,..,,/,/.,////%,ﬂ/
A AN NN\ AR N /,/././...//.//,. W N \
R // .// W N/ N ,///,,,z./,. NN N /H//,. /,,/// //////// 5, /N,/ W\ N\ N
N . A% N * . N // N, Ay \ \ \ \ /
2 \ JI N NN Y O\ ’.
A . /, /ﬂ//// .
DR
N \ /

A
NI
N

N ,Wa N /,// \ ,, N Wﬂb/ﬂ///ﬂ%///
\ Hv ...W«x.r \ N\ A %////H%/
RN \

\

=.4,

Fig. 16 Converged coordinate system for X,

36




r

. Report No. i 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-81859 '

4. Title and Subtitle 5. Report Date
o ) ] ) July 1980
VlSCO?S Compressible Flow About Blunt ?odles Using a 6. Performing Organization Code
Numerically Generated Orthogonal Coordinate System
7. Author(s) : 8. Performing Organization 'Report No.
R. A. Graves, Jr. and H. H. Hamilton II
' 10. Work Unit No.
9. Performing Organization Name and Address . 506-51-13-01
NASA Langley Research Center ' 1. Contract or Grant No.
Hampton, Virginia 23665 -
13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address v Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546
15. Supplementary Notes
16. Abstract
A numerical solution to the Navier-Stokes equations is obtained for blunt
axisymmetric entry bodies of arbitrary shape in supersonic flow. These equations
are solved on a finite-difference mesh obtained from a simple numerical technique
which generates orthogonal coordinates between arbitrary boundaries. The governing
equations are solved in time-dependent form using Stetter's improved stability
‘three-step predictor-corrector method. For the present application, the metric
coefficients were obtained numerically using fourth-order-accurate, finite-difference
relations and proved to be totally reliable for the highly stretched mesh used to
resolve the thin viscous boundary layer. Solutions are obtained for a range of
blunt-body nose shapes including concavities. :
17. Key Words (Suggested by Author(s}) 18. Distribution Statement
Blunt Body
Viscous Flow : o ..
Computational Methods Unclassified - Unlimited
Navier Stokes
Numerically Generated Coordinates Subject Category 34
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price®
Unclassified Unclassified 36 : AQ3

N

-305 For sale by the National Technical Information Service, Springfield, Virginia 22161













