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VISCOUS COMPRESSIBLE FLOW ABOUT BLUNT BODIES USING

A NUMERICALLY GENERATED ORTHOGONAL COORDINATE SYSTEM

R. A. Graves, Jr. and H. H. Hamilton II
Langley Research Center

SUMMARY

A numerical solution to the Navier-Stokes equations is obtained for
blunt axisymmetric entry bodies of arbitrary shape in supersonic flow. These
equations are solved on a finite-difference mesh obtained from a simple
numerical technique which generates orthogonal coordinates between arbitrary
boundaries. The governing equations are solved in time-dependent form using
Stetter's improved stability three-step predictor-corrector method. For the
present application, the metric coefficients were obtained numerically using
fourth_order-accurate, finite-difference relations andproved to be totally_ .....
reliable for the highly stretched mesh used to resolve the thin viscous
boundary layer. Solutions are obtained for a range of blunt-body nose shapes
including concavities. Results indicate that the numerically generated
coordinate system performed exceptionally well and no problems were encountered
in the coupling of the numerical coordinate generator and the fluid dynamic
equations.

INTRODUCTION

One of the major problems retarding the rapid development of computa-
tional fluid dynamics for complex geometries has been the difficulty of

generating the finite-difference mesh. Much effort hasbeen expended to
develop coordinate transformations and/or mesh generators for varying degrees
of geometric complexity (see refs. I-S for representative examples). For
viscous flow over blunted bodies, such as planetary entry vehicles, the
boundary conditions on the body and the large gradients adjacent to the
surface must be represented accurately by the finite-difference approximations
to the Navier-Stokes equations. Toward this goal, almost all numerical solu-
tions to the Navier-Stokes equations to date for blunt-body flows have used
body geometries conducive to use with natural or nearly orthogonal coordinate
systems.

In the natural coordinate system, the body surface itself forms one
boundary, i.e. the body contour coincides with a constant coordinate line.
Typical examples of this approach are a cylindrical coordinate system to
describe flow over a cylinder, a spherical coordinate system to describe flow
over a sphere, and a parabolic coordinate system to describe the flow over a
paraboloidal body. Reference 6 gives a representative use of a natural
coordinate system for the numerical solution of a fluid flow problem. In the
natural coordinate system, the normal coordinates intersect the body orthog-

onally,= thus simplifying the boundary conditions. There is little difficulty
in compressing the mesh near the body because the computational mesh system
is composed of lines parallel to the body which can be concentrated as close



to the body as desired. There is, however, one rather severe restriction on
the natural coordinate system; that is, the body must have an analytic shape.
Unfortunately, most planetary entry vehicles bear little resemblance to the
limited number of natural coordinate systems available.

Another option is similar to the natural coordinate system in that the
body surface becomes one coordinate line in the system. This is called the
body-oriented coordinate system. In this system, the coordinates of a point
are determined by the distance along a body surface measured from the axis of
symmetry and the distance along a normal to the body. This type of system
has been used to describe the flow over the forebody portions of blunt entry
bodies; references 7-9 give some representative examples. Although this
system has received wide use, it does suffer from several major deficiencies,
one of the most serious of which is that it cannot handle body shapes with
concavities (ref. 10).

Both conformal (ref. 5) and near-conformal mapping (ref. 4) have been
used to generate coordinate meshes about complicated geometric shapes; however,
these techniques are mathematically complicated and generally require multiple
transformation steps leading to a loss of physical reality in the computational
plane. Such complications make finite-difference mesh setups difficult and
the computer codes generally are not easily applied/converted to general shapes.

Recently, reference ii presented an application of a simple numerical
coordinate generator (ref. 12) to blunt-body shapes. This technique allows
for the numerical generation of general orthogonal coordinate systems about a
wide range of body geometries. In this technique, the body can be represented
by a series of discrete (but continuous) points rather than by an analytical
approximatio%and in the transformed computational plane, the region of
interest is rectangular with the body surface being a coordinate line. This
representation combines the advantages o£ the natural coordinate system and
the body-oriented coordinate system. An additional advantage is that the
coordinate%are generated in the physical plane, which s_mplifies the finite-
difference mesh setup. This technique was used in a time-dependent solution
procedure for inviscid flow over blunt bodies (ref. 13). The use of the time-
dependent solution procedur% where the moving shock wave was the outer-
coordinate boundary, required that the coordinate system be regenerated at the
end of each time step. This coupling of the fluid dynamics and the coordinate
system worked very well for a large number of test cases. However, this
application was for inviscid flow only and the finite-difference meshes were
nearly equally spaced.

The present analysis uses the coordinate generation technique (ref. 11)
along with the time-dependent solution concepts (ref. 13) to obtain solutions
to the full Navier-Stokes equations for viscous compressible flow over blunt
bodies. The emphasis is on obtaining fluid-flow solutions for blunt bodies
of varying nose shapes (complexity) where the mesh must be highly compressed
to resolve the viscous boundary layer.



SYMBOLS

a2,a3 forebody shape coefficients

CI,C2 Sutherland's viscosity coefficients

C specific heatP

E average error

f arbitrary function

F arbitrary vector function

h static enthalpy

hi, j metrical coefficients

hljh2jh3j transformed coordinate metrics

i _ direction index

I total intervals in _ direction

j _ direction index

J total intervals in n direction

Kc spacing parameter

M Mach number

N unequal spacing coordinate parameter

Npr Prandtl number

NRe Reynolds number

p pressure

-- -- -3

q nondimensional heat transfer, q = q/p V

RN nose radius, m

rI local distance between body surface and outer boundary

r radius of body surfaces

S1 cotangent of body angle at tangency point

t nondimensional time, t = t _/R N
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T nondimensional temperature, T = T Cp_/V2

U arbitrary vector

u nondimensional tangential velocity, u = u/V

V free-stream velocity, m/s

Sv nondimensional normal velocity, sV = S-V/V-

V nondimensional normal velocity, V = V/V

X,Y Cartesian coordinates

Sx,Sy shock location in Cartesian coordinates

Z axial coordinate

arbitrary parameter in Stetter's method

8 shock angle

Y ratio of specific heats

convergence criteria

transformed normal coordinate

@s body-surface angle (see fig. i)

el local angle (see fig. i)

@c cone angle

u nondimensional viscosity, u = u/u

transformed tangential coordinate

p nondimensional density, p = p/p_

radial distance (see fig. 5)

damping coefficient

Superscripts:

- dimensionalvalues

Subscripts:

free-stream quantities
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METHOD OF ANALYSIS

Coordinate System

The numerically generated orthogonal coordinates will be determined from
the original X,Y coordinate system's description of the body surface and
shock wave. Taking the origin of the X,Y system as lying inside the body
to be described, the surface distance _, which forms one of the transformed

, orthogonal coordinates, can be calculated by defining _ as zero on the -X
axis (fig. i) and increasing to unity at the end of the forebody surface.
Thus _ is given by

.0
s) -

r + dO
o s

where rs = (X2s + Y2s)i/2 and 0s = cos-l(-Xs/rs). As in the analysis of

reference 13, the shock wave is taken as the outer boundary of the transformed
coordinate system. On the outer boundary, n = 1 while on the body surface,
= 0. The level lines between the outer boundary, shock wave, and the body

surface can be constructed along straight lines connecting corresponding

points on the body and shock. Note that the mesh points on the outer boundary
are not the final mesh points, but initial values used only to set up the
level lines. The actual mesh points will result from the numerical generation
of the orthogonal normal lines. The spacing of the level lines is arbitrary;
however, for viscous flows, the boundary layer must be resolved and the unequal

spacing relation of reference 14 can be easily applied,

Nj/AN 1Kc

nj = l/ANK - 1
C

where Nj (j-I)AN and Nj I. with AN = i/(J-l) and Kc being the spacing
parameter (generally 1 < Kc < 2). The larger the spacing parameter Kc, the

more unequal the spacing. Using 'the unequal spacing relation, the level lines
between all corresponding points on the body and shock can be calculated. The
relationships for the corresponding values of X,Y can be obtained (see fig. 1
for geometrical schematic) from

rl,i [(Xn=I - X 0)2 _ 2]i/2= = i ' (Yn=I - Yn=O)i-

Xi,j = Xi,n=0 + (njrl,i)c°s @i

y. = Y + (Njrl,i)sin 01l,j i,n=0 S



where

81 = sin-l[(Yi,n=l - Yi,n=o)/rl,i]"
_ I .......

Figure 2 shows the level lines constructed in this manner for a spherically
capped conical body with Kc = 1.01, which gives nearly equal spacing.

Once the level lines have been determined, the normal lines are
constructed numerically so that an orthogonal system is defined. The approach •
to the construction of the normal lines is the one given in reference 12
which uses a simple "predictor-corrector" technique analogous to the
trapezoidal integration method of numerical integration. In this technique,
the solution is first predicted from the level line at a known point by using
the Euler method. Once the predicted point on the next level line is
obtained, the slope at that point is calculated and a new predicted point is
obtained using this slope. The actual solution is then a combination of these

two solutions, i.e. the final X,Y values are an average of the predicted
and corrected ones. This procedure is illustrated in figure 3. Starting on
the body, the solution proceeds point by point along a level line until all
normals on that level have been constructed. Then the solution proceeds to
the next level and the process is continued until the outer boundary shock
is reached. Figure 4 shows a typical orthogonal coordinate mesh constructed
about a spherically capped conical body.

Coordinate Metrics

Once the coordinate system is constructed, then the X,Y location of all
mesh points is known and using the coordinate system depicted in figure 5, the
metric coefficients can be determined using the nomenclature of reference 15.

1 1
u = n x : cos

2 2 ^
u = _ x = p sin

3 3
U = _ X = Z

A A

Note that p = p (_,_) and z = z(_,_). The metric coefficients are obtained
from

_x 1 _x 1 _x 2 _x 2 _x 3 _x 3
h° - + .

l,j _ui _uj _ui _uj _ui _uj

For an orthogonal system, the metric coefficients hl,2, h2,I, hl,3, h3,I,

h2,3, and h3,2 all have to be zero, leaving only the three familiar coefficients

hI, h2, h3•

hI = hV_l,l h2:_ h_2, 2 h3 = %/h3,3



When the derivativesin the metric coefficientrelation are taken, the following
metric coefficientexpressionsare obtained:

•_p 2 (_z)2hl,l= +
/%

_p _p + _z az
hl,2 = h2,1 - _D _ _n _

hl,3 = h3,1 = 0
,%

= (8z)2
h2,2 (_)2 + 7_

h2,3 = h3,2 = 0

^2
h3,3 = p

With the choice of the presentcoordinatesystem,two of the three necessary

orthogonalityconditionsare identicallysatisfied,leavingonly the hl,2
coefficient,which was shown in referenceii to be negligiblefor the present
application. Thus, only the three necessarymetrics are left:

I%

hl = [(_.__np)2+ (__._)2]1/2
^

h2 = [(____)2 + t'_-_A)z)2]l/2
/%

h3= P

Since the computationalplane (_,D) is an equallyspacedrectangularregion
(see fig. 6), the derivativesin the above metric coefficientrelationscan
be evaluatedusing equallyspaced,centralfinitedifferences. For the
present analysis,fourth-order-accuraterelations (ref. 16) are used in place
of simplersecond-order-accuratefinite differencesin order to produce smoothly
varyingmetric coefficientsadjacentto the stagnationline. These fourth-order-
accuratemetric coefficientsproved to be totallysatisfactoryfor the present
analysiseven in the regionsof high-meshstretching/compression.

GoverningEquations

The equationsused in the presentanalysisare the full unsteadyNavier-
Stokes equationsin generalorthogonalcoordinatesfor laminarviscous flcw

" as given by reference17. These equationsin nondimensionalform are:

a___p= u 9p v 30 0 _u p _v

3t h I 3_ h2 _D _1 _ h2 _D

Ou _ Pv _ (hlh3)
hlh2h3 a_ (h2h3) hlh2h3 3_
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3u u _u v _u uv 3hl v 2 3h2 1 _p+

3t hI 3_ h2 3q hlh2 3q hlh2 3_ hI 3_

0-_Re hlh2h 3 "_- (h2h3T_) + -_- (hlh3T_n)

+ T_rl 3h 1 Tnn 3h 2 Tqbqb 3h 3

hlh 2 3rl hlh 2 3_ hlh 3 3_

3v u 3v v 3v vu 3h2 u2 3hl 1 30-- +

3t hI 3_ h2 3q hlh2 3_ hlh2 3q Ph2 3q

+ PNR----_ hlh2h 3 _ (h2h3"r_n) . g-_ (hlh3"rnn)

3h_ u 3h v 3h + u _0 + v 30

3t hI 3_ h2 3q OhI 3_ Oh2 3q

+ hIh2h3NReNp r g_ \ h I

I+ "_'k' _'_2 _" + O_Re hI _

[T_ 3hI Tqbq53h3 T_T] 3h2]
+ V Lhlh 2 3q + h2h3 _]q hlh2 3_ J

[Tr]q 3h2 T_bqb3h3 T_r] 3hl]

+ u khlh2 3_ + hlh3 3_ hlh2 i_-_-]

Tqr] 3V T_q 3U T_q 3v} _.

where

(v. .

_ 2_ (v-_3 +
"Cqrl 3 _erlq
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_ 2_ (v. ?) +
Tqbqb 3 _e(_qb

x_n = _n_ = IJean

V • v = hlh2h3 -_ _- (hlh3V)

2 3u 2v 3hl
e_ = +h 1 3_ hlh 2 Dn

2 3v 2u Dh2

e_n - h 2 3n + hlh 2 3_

2u 3h3 2v 3h3

e¢¢ = hlh3 3K + h2h3 3n

e_ = F113_ + h 2 D_

The axis of symmetry, stagnation line, is a singular line in the computational

domain because h3 = 0 and u = 0 along the axis. The limiting forms are:

3p _ 2 Du 1 D 1 3 (3h3_ 1 Dhl_
Dt hI p 9_ h2 3n (pv) - pv 3h3 3_ \_-_--] + hlh2 3_ J

h2

3v v 3v 1 3p + __!_l !2 3T_

_-Y---h--__--_-_h2 _n _NReIhl _

1 3hl 1 3 3h\o_/j
1 3"nn+, + ( -_]

+ h2 3rl rlrlhlh2 3rI 3h3 Drl
h2 DE



_-t h2 ]_-+ _ _-q+ Phlh2NReNpr _ \_II _ /

+ Phlh2NReNpr _rl\E _

+ Phlh2NReNpr -_S'_- \8-_--/ _"

1_/_2r__u+ _ _ _hl z¢¢ _ _h3_]
+PNRe hI _--_ hlh2 _q + Dh3 _)]\_ /]h2 _

T

+ qq Dv
h2 8q

where

2p (v _)
Tnq 3 " +- Beqq

2p (V • _) +
T_@= -7-- pe@@

2 _u 2v Bhl

e_ - hi B_ + hlh2 8q

2 8v

enn - h2 _-q

e@_p= 2v _ (_h3_ 2 _u

h2 a_---_-

!0



2ulvv[hli h311V " v = h--_8-_ h-20--q hlh 2 On * _h3 _-\T/
h2 a_

In additionto the above conservationequations,an equationof state and a
viscositylaw must be specified. For a perfect gas, the equationof state
can be given by

Y-I
--ohp = y

and Sutherland'sviscosityequationis used in the form

#3/2
= CI C2 +

to determine the molecular (laminar) viscosity.

BoundaryConditions

Along the body surfacefor the present analysis,the followingconditions
are imposed:

u = 0 (no slip)

v = 0 (no blowing)

h = h (constantwall temperature)
w

dqlN= 0, Pi,l= - Pi,

Becausetheflowanalysisis in theunsteadyform,boththeflowpropertiesand
shock velocityhave to be specifiedat the upper boundary. This is'accomplished
using a modifiedform of the Rankine-Hugoniotrelations,a completedevelopment
of which can be found in reference13. In order to apply these relations,the

pressure immediatelybehind the shock has to be calculatedusing only
quantitiesinteriorto the computationalregion. This calculationis
performedusing the continuityequation,energy equation,and equationof
state with the appropriatederivativesin these equationsbeing expressedby
backwardfinite differences. Once the shock velocity is obtained at each
mesh point along the shock, the shock position is determinedfrom the
solutionof the followingequations:

dsX.
1 _ Sv cos (_12 - 6)dt z

dsy.

I = - sV sin (_/2 - B) iidt i



The flowconditionsalongthe outflowboundaryare obtainedusingthe follow-
ing second-order-accurate extrapolation relation'for equally spaced data
(ref. 7) :

f'1= (20fi-I - 6fi-2 - 4fi-3 + fi-4)/II + 0(A_2)

Numerical Method of Solution

Because of the necessity of recalculating the orthogonal coordinate
system at each time step (due to the shock movement), it is imperative that
the overall solution converge as rapidly as possible to minimize the
additional work. For this reason, Stetter's method (ref. 18) is chosen as
the method of solution, for it has been demonstrated (refs. 19 and 20) to
have an expanded region of stability which allows for a morerapid marching
to steady state. In Stetter's three-step predictor-corrector method, the
derivatives in the governing equations are expressed as second-order finite
differences so that the overall solution is of second-order accuracy in the
space dimensions. Since the steady-state solution is the desired end
product, the dp/dt term in the energy equation is dropped (refs. 7 and 9)
and thus temporal accuracy is not maintained.

In order to facilitate the use of Stetter's method, the governing
equations are recast in the following simplified form:

_U
--=F
3t

U = and F represents the righthand side of the
appropriate equation.

/Sy

The three-step process becomes:

(O)uN+I.= UN + Atk FNm,J 1,j m,j (step i)

(1)uN+I : UN Ati (0) N+I FN
l,J l,j + T ( F. . + .) (step 2)1,J 1,]

(2)uN+I : UN Ati (1)FN+I" + F.N
I,3 1,j + -_-- ( 1,J 1,j) (step 3) .

UN+I + e (1)uN+I + (i-_) (2)U_J--.I(parameterization)
1,3 1,3 1,3
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After the parameterizationstep, a damping (or smoothing)of the solution
is performedto preventoscillationsin the flow from destroyingthe solution
process. This dampingis the fourth-orderproceduregiven in reference21
and used quite successfullyin references9 and i0.

Becauseof the large variationin grid spacingused in the present
analysis,the local maximumtime stepbased on the CFL conditioncould not
be used as was done in reference20. Instead,a localminimum time step was
found along each _ = constantline and then the time step was definedas

Ati = 2.4 [ Min (AtCFL,)][2_j_J J i=constant i

This time step proved entirelysatisfactoryfor the range of body shapes
given in the presentanalysis.

The orthogonalcoordinatesystemwas numericallygeneratedat.the end
of each full time step while at the end of steps 1 and 2, only the shock
position and relatedmetricswere calculated. This is the same procedure
•used in reference13 where a wide varietyof inviscidb!unt-_bodyflow fields
were calculated. Note that in the presentstudy,no attemptwas made to optimize
the fluid dynamic/orthogonalcoordinatecalculationprocedure.

The solutionprocedurewas assumedto be converged(at steady state)
when the averageerror was less than the convergencecriteria. The average
error is definedas

I I-I J-i N+I N 1E = i=l j=2 Pi,j

(1-1) (J-2)

Thus, the solution is converged when

E< E

where _ is a small value on the order of 10-6 .

RESULTS AND DISCUSSION

The present analysiswas used to calculatethe flow over a 45° hyperboloid
using the test conditionsgiven in table I. The computationalgrid was a
15 x 31 mesh with a spacingparameter Kc = 1.2 in the q direction,which
gives a highly compressedmesh adjacentto the body surface. The spacing
parameterfor the _ directionwas Kc = 1.15, which gave a slight
compressionin the stagnationregion and a stretchingof the mesh toward the
outflowboundary. The calculatedpressure and heat-transferdistributions
are given in figures7 and 8 where an excellentcomparisonwith two other
computationalsolutionsis seen. The presentanalysishad no difficultyin
handling this analyticbody with its smooth variationin surfacecurvature.

13



The body-orientedcoordinatesystem which has receivedyerywide use_
becauseof its simplicitysuffersseveralseriousdeficiencies,one of the
more seriousof which is that for bodies with a curvaturediscontinuity,such
as sphericallycapped cones,there results a singularityin the governing
equations. This problem can be circumventedby making the discontinuity
point a specialcase (ref. 22) where specialderivativerelationsare
applied. However, the presentnumericallygeneratedcoordinatesystem does
not suffer the same problem and this was amply demonstratedfor inviscidflow
(ref. 13) where solutionsfor a number of curvaturediscontinu0usbodies were
obtainedfor a wide range of conditions. Using the present analysis,the
flow over a 45° sphericallycappedconicalbody was calculatedusing the
conditionof table I. The computedheat-transferdistributionis plotted
in figure 9 along with both experimentaland computationalresults. Again,
the comparisonsare very good and the presentanalysishad no difficultyin
handling the surfacecurvaturediscontinuity.

A more rigorousdemonstrationof the capabilitiesof the numerical
orthogonalcoordinategeneratorcan be seen on bodies with increasingnose
bluntness,includingthose with reversecurvature. A family of bodieshaving
these propertieswill be generatedusing the followingcubic forebody
generator:

X = X° + a2 Y2 + a3Y3

where

3 SlYl

a2 = Y12 Xl - Xo 3

aS = (sI - 2a2YI)/3YI2

1
Sl = tan 0c

X1 = 0.5J

Y1 = I.

0 = 40°
C

The £orebody joins smoothly to the conical afterbody with the surface
angle specifiedby 8c. Figure i0 gives the forebodyshapes as a function

of Xo and these five shapes representthe range of shapes that could be

expectedfor planetaryentry bodies experiencingsevere ablation in the
stagnationregion (ref. 23). Using the conditionsof table I, but with
= 0.003, the flow fields about the five body shapeswere computed. The

pressure and heat-transferdistributionsare given in figures ii and 12 where
the effect of nose blunting is readilyapparent. Also, the representative
effectsof blunting on shock and sonic-lineshape can be seen in figures 13-15.

14



A representative converged coordinate mesh is given in figure 16 for the
X = 0.4 body. Note the highly compressed mesh near the body surface whicho

was necessary to resolve the boundary layer. All these results obtained
with the present analysis are excellent with no noted undesirable flow-field/
coordinate system coupling effects. Part of the success of the present
analysis is due to the smooth metric coefficients produced by the fourth-
order differencing. Table 2 gives the metric coefficients at two locations
for the X = 0.4 case and these results are typical of all the solutionso

obtained with the present analysis.

CONCLUDING REMARKS

The use of numerically generated orthogonal coordinates in compressible
viscous-flow solutions to the Navier-Stokes equations is both practical
and desirable. The technique has been demonstrated for a range of blunt-

body shapes and the use of numerically evaluated metric coefficients has
been successfully demonstrated. Although the present analysis had a moving
boundary which necessitated recalculating the coordinate system at each step
of the flow calculation, the technique should find easy application in
static coordinate situations.
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TABLE I.- COMPUTATIONAL TEST CONDITIONS

= 10.33

Y=l.h

P = 100.77Nim2
too

Too= h_.26° K
k

T = 330.6° K
w

RN = 0.03175m

NRe= 115600

s = 2.5x 10-6

O = 0.001

N =0.7
pr

• . °
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- TABLE 2.- METRIC COEFFICIENTS

" (a) Tangential Direction Variations

_ " F.

n = .1333

hI h2 h3

• 0 1.0427 .00861 0
.o714 i.lO42 .00851 •0756
•1428 1.2241 .00818 •1578
•2143 i.3472 .00765 .2471
.2857 i.4831 .00693 .341_7
•3571 I.6337 .00608 .4528
•4286 i.7970 .00522 •5740
•5000 i.9680 .00461 •7076
•5714 2.1608 .ooh58 .8344
•6428 2.3878 .00525 •9687
•7143 2.6284 .00626 i.0847
•7857 2.8881 .o07o6 I.2112

•8571 3.1767 .00763 i.35o4
.9286 3.4944 .00800 i.5035

1.0000 3.8438 .00821 1.6718

L.
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• 4

TABLE 2.- METRIC COEFFICIENTS (CONCLUDED)

(b) Normal Direction Variations

= .3571

. _ h2 h3

0 ' 1.6329 •00249 _4529
•0333 1.6331 .00311 .4529
•0667 1.6332 .00389 .4529
.i000 1.6334 .00486 .h529
•1333 1.6337 .00608 .4529
.1667 1.6340 .00759 .4528
.2000 1.6344 '.00949 .4528
.2333 i.6349 .01187 .4527
•2667 1.6355 .01485 .4526
•3000 I.6363 .01856 .h525
•3333 i.6373 .02321 .4521_
•3267 1.6385 .02902 .4522
.bOO0 1.6401 .03629 _b520
.1_333 1.6420 .04539 .4518
.I_667 1.6444 .05679 .4515
.5000 1.6474 .07105 .4512
•5333 1.6512 .08891 .4507
•5667 1.6559 .11129 .4502
.6000 1.6617 .13933 ._95
.6333 1.669o .17449 .4487
.6667 1.6781 .21862 .41_77
.7000 1.6894 .27398 .4_66
•7333 1.7035 .34349 .4_53
.7667 i.7210 •43075 ._438
.8000 1. 7427 .54021 ._1_22
.8333 i.7696 .67729 .41_07
.8667 1.8028 .84839 .4395
.9000 1.8433 1.06074 .4389
.9333 1.8923 1.32181 ]43_8
.9667 1.9503 1•63776 ._432

1.0000 2.0164 2.01539 .4509

2O
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Fig. 2 Level line construction.
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Fig. 9 Comparisonof heat-transfer distributions for a 45° spherecone.
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Fig.11 Effectof nosebluntingonthepressuredistribution.
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Fig. 12 Effectof nose blunting on the heat-transfer distribution.
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Fig. !3 Shocl"andsonicline for Xo : O.
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Fig, 14 Shockandsonicline for Xo =.2.
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Fig. 15 Shockand sonic line for Xo-'.4.
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Fig. 16 Convergedcoordinatesystemfor Xo,, .4. i.
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