9 research outputs found

    Isostructural Mott transition in 2D honeycomb antiferromagnet V 0.9 PS 3

    Get PDF
    Abstract: The MPX3 family of magnetic van-der-Waals materials (M denotes a first row transition metal and X either S or Se) are currently the subject of broad and intense attention for low-dimensional magnetism and transport and also for novel device and technological applications, but the vanadium compounds have until this point not been studied beyond their basic properties. We present the observation of an isostructural Mott insulator–metal transition in van-der-Waals honeycomb antiferromagnet V0.9PS3 through high-pressure x-ray diffraction and transport measurements. We observe insulating variable-range-hopping type resistivity in V0.9PS3, with a gradual increase in effective dimensionality with increasing pressure, followed by a transition to a metallic resistivity temperature dependence between 112 and 124 kbar. The metallic state additionally shows a low-temperature upturn we tentatively attribute to the Kondo effect. A gradual structural distortion is seen between 26 and 80 kbar, but no structural change at higher pressures corresponding to the insulator–metal transition. We conclude that the insulator–metal transition occurs in the absence of any distortions to the lattice—an isostructural Mott transition in a new class of two-dimensional material, and in strong contrast to the behavior of the other MPX3 compounds

    Redetermined structure of gossypol (P3 polymorph)

    No full text
    An improved crystal structure of the title compound, C30H30O8 (systematic name: 1,1′,6,6′,7,7′-hexahydroxy-5,5′-diisopropyl-3,3′-dimethyl[2,2′-binaphthalene]-8,8′-dicarbaldehyde), was determined based on modern CCD data. Compared to the previous structure [Talipov et al. (1985). Khim. Prirod. Soedin. (Chem. Nat. Prod.), 6, 20–24], geometrical precision has been improved (typical C—C bond-distance s.u. = 0.002 Å in the present structure compared to 0.005 Å in the previous structure) and the locations of several H atoms have been corrected. The gossypol molecules are in the aldehyde tautomeric form and the dihedral angle between the naphthyl fragments is 80.42 (4)°. Four intramolecular O—H...O hydrogen bonds are formed. In the crystal, inversion dimers with graph-set motif R22(20) are formed by pairs of O—H...O hydrogen bonds; another pair of O—H...O hydrogen bonds with the same graph-set motif links the dimers into [001] chains. The packing of such chains in the crystal leads to the formation of channels (diameter = 5–8 Å) propagating in the [101] direction. The channels presumably contain highly disordered solvent molecules; their contribution to the scattering was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON and the stated molecular mass, density etc., do not take them into account

    Comparative structural evolution under pressure of powder and single crystals of the layered antiferromagnet FePS3

    No full text
    FePS3 is a layered magnetic van der Waals compound that undergoes a Mott insulator-metal transition under applied pressure. The transition has an associated change in the crystal symmetry and magnetic structure. Understanding the underlying physics of these transitions requires a detailed understanding of the crystal structure as a function of pressure. Two conflicting models have previously been proposed for the evolution of the structure with pressure. To settle the disagreement, we present a study of the pressure-dependent crystal structures using both single-crystal and powder x-ray diffraction measurements. We show unambiguously that the highest-pressure transition involves a collapse of the interplanar spacing, along with an increase in symmetry from a monoclinic to a trigonal space group, to the exclusion of other models. Our collected results are crucial for understanding high-pressure behavior in these materials and demonstrate a clear and complete methodology for exploring complex two-dimensional material structures under pressure

    Emergent magnetic phases in pressure tuned van-der-Waals antiferromagnet FePS3

    Get PDF
    Layered van-der-Waals 2D magnetic materials are of great interest in fundamental condensed matter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultra-high-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS3 at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modelling of the spin con figurations. As pressure is applied, the previously-measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction, and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the ab planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from k = (0, 1, 1/2 ) to k = (0, 1, 0), a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range-order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fi tting suggests this phase to be a short-ranged version of the original ambient pressure structure - with the Fe moment size remaining of similar magnitude and with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition

    Data for Emergent magnetic phases in pressure tuned van-der-Waals antiferromagnet FePS3

    No full text
    Layered van-der-Waals 2D magnetic materials are of great interest in fundamental condensedmatter physics research, as well as for potential applications in spintronics and device physics. We present neutron powder diffraction data using new ultra-high-pressure techniques to measure the magnetic structure of Mott-insulating 2D honeycomb antiferromagnet FePS3 at pressures up to 183 kbar and temperatures down to 80 K. These data are complemented by high-pressure magnetometry and reverse Monte Carlo modeling of the spin configurations. As pressure is applied, the previously-measured ambient-pressure magnetic order switches from an antiferromagnetic to a ferromagnetic interplanar interaction, and from 2D-like to 3D-like character. The overall antiferromagnetic structure within the ab planes, ferromagnetic chains antiferromagnetically coupled, is preserved, but the magnetic propagation vector is altered from k = (0, 1, 1/2) to k = (0, 1, 0), a halving of the magnetic unit cell size. At higher pressures, coincident with the second structural transition and the insulator-metal transition in this compound, we observe a suppression of this long-range-order and emergence of a form of magnetic short-range order which survives above room temperature. Reverse Monte Carlo fitting suggests this phase to be a short-ranged version of the original ambient pressure structure - with the Fe moment size remaining of similar magnitude and with a return to antiferromagnetic interplanar correlations. The persistence of magnetism well into the HP-II metallic state is an observation in contradiction with previous x-ray spectroscopy results which suggest a spin-crossover transition
    corecore