22 research outputs found

    Development of fuzzy rule-based parameters for urban object-oriented classification using very high resolution imagery

    Get PDF
    Urban areas consist of spectrally and spatially heterogeneous features. Advanced information extraction techniques are needed to handle high resolution imageries in providing detailed information for urban planning applications. This study was conducted to identify a technique that accurately maps impervious and pervious surfaces from WorldView-2 (WV-2) imagery. Supervised per-pixel classification algorithms including Maximum Likelihood and Support Vector Machine (SVM) were utilized to evaluate the capability of spectral-based classifiers to classify urban features. Object-oriented classification was performed using supervised SVM and fuzzy rule-based approach to add spatial and texture attributes to spectral information. Supervised object-oriented SVM achieved 82.80% overall accuracy which was the better accuracy compared to supervised per-pixel classifiers. Classification based on the proposed fuzzy rule-based system revealed satisfactory output compared to other classification techniques with an overall accuracy of 87.10% for pervious surfaces and an overall accuracy of 85.19% for impervious surfaces

    Deep learning for forest inventory and planning : a critical review on the remote sensing approaches so far and prospects for further applications

    Get PDF
    Data processing for forestry applications is challenged by the increasing availability of multi-source and multi-temporal data. The advancements of Deep Learning (DL) algorithms have made it a prominent family of methods for machine learning and artificial intelligence. This review determines the current state-of-the-art in using DL for solving forestry problems. Although DL has shown potential for various estimation tasks, the applications of DL to forestry are in their infancy. The main study line has related to comparing various Convolutional Neural Network (CNN) architectures between each other and against more shallow machine learning techniques. The main asset of DL is the possibility to internally learn multi-scale features without an explicit feature extraction step, which many people typically perceive as a black box approach. According to a comprehensive literature review, we identified challenges related to (1) acquiring sufficient amounts of representative and labelled training data, (2) difficulties to select suitable DL architecture and hyperparameterization among many methodological choices and (3) susceptibility to overlearn the training data and consequent risks related to the generalizability of the predictions, which can however be reduced by proper choices on the above. We recognized possibilities in building time-series prediction strategies upon Recurrent Neural Network architectures and, more generally, re-thinking forestry applications in terms of components inherent to DL. Nevertheless, DL applications remain data-driven, in contrast to being based on causal reasoning, and currently lack many best practices of conventional forestry modelling approaches. The benefits of DL depend on the application, and the practitioners are advised to ex ante subject their requirements to operational data availability, for example. By this review, we contribute to the technical discussion about the prospects of DL for forestry and shed light on properties that require attention from the practitioners.Peer reviewe

    Development of transferable rule-sets for urban areas using QuickBird satellite imagery

    Get PDF
    Although rule-based object-based classification can often perform better than the supervised approaches, its attribute selection is very time consuming and hardly transferable between different urban areas. The purpose of this study is to identify transferable rule-sets for different areas from QuickBird satellite imagery for urban areas consisting heterogeneous man-made and natural features. Object-based classification was used in this research, and a mathematical method was proposed for rule transferability for different urban areas

    Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space

    Get PDF
    Forest resource assessments based on multi-source and multi-temporal data have become more common. Therefore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling and analyzing time-series and spatial sequential data is now more pivotal. Bayesian filtering and smoothing provide a well-defined formalism for the fusion or assimilation of various data. We ascertained how often the generic, standardized Bayesian framework is used in the scientific literature and whether such an approach is beneficial for forestry applications. A review of the literature showed that the use of Bayesian methods appears to be less common in forestry than in other disciplines, particularly remote sensing. Specifically, time-series analyses were found to favor ad hoc methods. Our review did not reveal strong numeric evidence for better performance by the various Bayesian approaches, but this result may be partly due to the challenge in comparing a variety of methods for different prediction tasks. We identified methodological challenges related to assimilating predictions of forest development; in particular, combining modelled growth with disturbances due to both forest operations and natural phenomena. Nevertheless, the Bayesian frameworks provide possibilities to efficiently combine and update prior and posterior predictive distributions and derive related uncertainty measures that appear under-utilized in forestry.Peer reviewe

    Development of spectral indices for roofing material condition status detection using field spectroscopy and WorldView-3 data

    Get PDF
    Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments

    Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data

    Get PDF
    This paper integrates decision tree–based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain

    Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2 imagery

    Get PDF
    Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView-2 (WV-2) satellite data. Different feature selection techniques, including support vector machine (SVM), random forest (RF) and chi-square (CHI) are evaluated to indicate the most effective algorithm to identify the best set of OBIA attributes (spatial, spectral, textural and colour). The chi-square algorithm outperformed SVM and RF techniques. The classification result based on CHI algorithm achieved an overall accuracy of 83.19% for the training image (first site). Furthermore, the proposed model was used to examine its performance in different areas; and it achieved accuracy levels of 83.44, 87.80 and 80.26% for the different selected areas. Therefore, the selected method can be potentially useful for detecting road conditions based on WV-2 images

    Combining data mining algorithm and object-based image analysis for detailed urban mapping of hyperspectral images

    Get PDF
    Image classification of roofing types, road pavements, and natural features can assist land-cover maps in further examining the effects of such features on health, pollution, and the microclimate in urban settings. Airborne hyperspectral sensors with high spectral and spatial resolutions can be employed for detailed characterization of urban areas. This study aims to develop a procedure that is instrumental for automated knowledge discovery and mapping of urban surface materials from a large feature space of hyperspectral images. Two different images over Universiti Putra Malaysia (UPM) and Kuala Lumpur (KL), Malaysia, were captured by using hyperspectral sensors with 20 and 128 bands. The images were used to explore the combined performance of a data mining (DM) algorithm and object-based image analysis (OBIA). A large number of attributes were discovered with the C4.5 DM algorithm, which also generated the classification model as a decision tree. The UPM and KL classified images achieved 93.42 and 88.36% overall accuracy. The high accuracy of object-based classification can be linked to the knowledge discovery produced by the DM algorithm. This algorithm increased the productivity of OBIA, expedited the process of attribute selection, and resulted in an easy-to-use representation of a knowledge model from a decision tree structure

    Improving detailed rule-based feature extraction of urban areas from WorldView-2 image and lidar data

    Get PDF
    Urbanization is commonly accepted as an important contributor to the growth of man-made structures and as a rapid convertor of natural environments to impervious surfaces. Roofs are one class of impervious surface whose materials can highly influence the quality of urban surface water. In this study, two data sources, WorldView-2 (WV-2) imagery and a combination of WV-2 and lidar data, were utilized to map intra-urban targets, with 13 classes. Images were classified using object-based image analysis. Pixel-based classifications using the support vector machine (SVM) and maximum likelihood (ML) methods were also tested for their abilities to use both lidar data and WV-2 imagery. ML and SVM classifications yielded overall accuracies of 72.46% and 75.69%, respectively. The results of these classifiers exhibited mixed pixels and salt-and-pepper effects. Spectral, spatial, and textural attributes as well as various spectral indices were employed in the object-based classification of WV-2 imagery. Feature classification of WV-2 imagery resulted in 85% overall accuracy. Lidar data were added to WV-2 imagery to assist in the spatial and spectral diversities of urban infrastructures. Classified image made from WV-2 imagery and lidar data achieved 92.84% overall accuracy. Rule-sets of these fused datasets effectively reduced the spectral variation and spatial heterogeneities of intra-urban classes, causing finer boundaries among land-cover classes. Therefore, object-based classification of WV-2 imagery and lidar data efficiently improved detailed characterization of roof types and other urban surface materials

    Object-based classification of QuickBird image and low point density LIDAR for tropical trees and shrubs mapping

    Get PDF
    This paper assessed the performance of object-based supervised support vector machine (SVM) and rule-based techniques in classifying tropical vegetated floodplain using 0.6m QuickBird image and LIDAR dataset of 1.4 points per square meter (PPSM). This is particularly significant in hydraulic modelling in which vegetation roughness is a big uncertainty and largely relies on land cover classification. The supervised classification resulted in 79.40% overall accuracy whilst the results improved by 8% with rule-based classification. 40 sample plots of trees and shrubs were measured to be compared to obtain the best classification results. The results showed a linear relationship between tree diameters and NDVI with a high Pearson correlation of 0.76 and coefficient of determination (r2) of 0.58. The canopy areas of shrubs were found to be representative spatially with an even higher Pearson correlation of 0.98 and r2 of 0.95. The study concluded that the fusion of QuickBird image and low point density LIDAR in rule-based classification together with field data were useful in quantifying tropical trees and shrubs
    corecore