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REVIEW

Potential of Bayesian formalism for the fusion and assimilation
of sequential forestry data in time and space
Cheikh Mohamedou, Annika Kangas, Alireza Hamedianfar, and Jari Vauhkonen

Abstract: Forest resource assessments based on multi-source and multi-temporal data have become more common. There-
fore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling and analyzing time-series and spatial
sequential data is now more pivotal. Bayesian filtering and smoothing provide a well-defined formalism for the fusion or
assimilation of various data. We ascertained how often the generic, standardized Bayesian framework is used in the scien-
tific literature and whether such an approach is beneficial for forestry applications. A review of the literature showed that
the use of Bayesian methods appears to be less common in forestry than in other disciplines, particularly remote sensing.
Specifically, time-series analyses were found to favor ad hoc methods. Our review did not reveal strong numeric evidence
for better performance by the various Bayesian approaches, but this result may be partly due to the challenge in comparing
a variety of methods for different prediction tasks. We identified methodological challenges related to assimilating predic-
tions of forest development; in particular, combining modelled growth with disturbances due to both forest operations and
natural phenomena. Nevertheless, the Bayesian frameworks provide possibilities to efficiently combine and update prior
and posterior predictive distributions and derive related uncertainty measures that appear under-utilized in forestry.

Key words: forest inventory, hierarchical Bayes model, Kalman filter, Markov chain Monte Carlo (MCMC), credible interval.

Résumé : L’évaluation des ressources forestières fondée sur des données de nombreuses sources et multitemporelles est
devenue plus fréquente. Par conséquent, l’amélioration des capacités de prévisions de la dynamique forestière au moyen
du regroupement et de l’analyse efficaces des données séquentielles spatiales et de séries chronologiques est maintenant
plus cruciale. Le filtrage et le nivellement bayésiens fournissent un formalisme bien défini pour la fusion ou l’assimilation
des diverses données. Nous avons déterminé la fréquence à laquelle le cadre bayésien générique et normalisé est utilisé
dans la littérature scientifique et nous avons évalué si une telle approche est avantageuse pour les applications forestières.
Une revue de la littérature a montré que l’utilisation des méthodes bayésiennes semble être moins fréquente en foresterie
que dans d’autres disciplines, particulièrement la télédétection. On a constaté plus particulièrement que les analyses des sé-
ries chronologiques favorisaient les méthodes ad hoc. Notre revue n’a pas révélé de preuves numériques importantes pour
une meilleure performance par diverses approches bayésiennes, mais ce résultat peut être dû en partie à la difficulté de
comparer un éventail de méthodes pour différentes tâches de prévisions. Nous avons identifié des défis méthodologiques
reliés à l’assimilation des prévisions du développement forestier; plus particulièrement, en combinant la croissance modéli-
sée aux perturbations dues aux opérations forestières et aux phénomènes naturels. Néanmoins, les cadres bayésiens offrent
des possibilités de combiner efficacement et de faire une mise à jour avant et après les distributions prédictives et de calcu-
ler les mesures connexes de l’incertitude qui semblent sous-utilisées en foresterie. [Traduit par la Rédaction]

Mots-clés : inventaire forestier, modèle hiérarchique bayésien, filtre de Kalman, Monte Carlo par chaîne de Markov (MCCM),
intervalle de crédibilité.

1. Introduction

1.1. Motivation and objectives
Systematic forest inventories have been carried out for over a

century (Kangas et al. 2018a) and have utilized remote sensing
and other digital map data for decades to estimate forest vari-
ables (Katila and Heikkinen 2020). While historical and new data
have considerable potential to improve forestry-related predic-
tions, this is not self-evident and may not be realized unless

sampling, modelling, and estimationmethods are used appropri-
ately with respect to the different properties of the data sources
(Kangas et al. 2018b, 2019). It becomes valid to ask whether lessons
learned from data fusions in other fields could be applied to ration-
alize forest inventory data processing. In particular, the field of
engineering has developed a standardized, formal approach for
estimating the state of the system through noisy observations
(Särkkä 2013). Many of the observations made by Särkkä (2013) on
generic measurement systems can easily be extended to forestry
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data: even with the most carefully measured field plots, much of
the signal may remain hidden (i.e., the forestry dynamics that we
attempt to model). Instead, we must deal with “noise” (Särkkä
2013) in the form of measurement, model, and sampling errors
(cf. Kangas et al. 2019).
The sequential filtering, smoothing, and predicting process

described by Särkkä (2013) is based on the Bayesian approach that
exploits the posterior distribution ofmodel parameters, in contrast
to analyses that optimize a predefined objective function. Based on
reviews and applications of Bayesian data fusion in forest invento-
ries (Varvia 2018) and ecosystemmodelling (van Oijen 2017; Mäkelä
2020), the Bayesian approach provides a well-defined formalism
to (i) define a problem in a practical probabilistic framework,
(ii) incorporate a priori (expert) knowledge to the observed data,
(iii) incrementally update the posterior distribution as more data
become available, and (iv) express and incorporate the uncer-
tainty of estimated model parameters and predictions. These
properties suggest that fusing data, while quantifying the
related uncertainties based on exact schematics of the Bayesian
approach, could be beneficial for forest inventories.
In this study, we reviewed the concepts of Bayesian data fusion,

especially with regard to the applicability of these concepts to se-
quential forestry data. We defined the concepts of sequential
Bayesian estimation (Section 1.2) and specified the interests for
the review (Section 1.3). Subsequent sections specifically review

� How often algorithms related to Bayesian smoothing, filtering,
and predicting have been used in forestry to date, compared to
other scientific fields, and what features do the reported key
applications of these concepts provide to forestry (Section 2)?

� To what extent do forestry applications use either ad hoc or
Bayesianmethods and, in the latter case, to what extent do they
take advantage of the features related to Bayesian smoothing,
filtering, and predicting (Section 3)?

� Currently realized numeric and potential future benefits from
standardizing the formulation of these problems using Bayes-
ian approaches and proposals (Sections 4–5).

1.2. Key generic concepts
As in Knödel et al. (2007), we consider “fusion” and “assimila-

tion”, as well as “combination”, “integration”, “merging”, “syn-
ergy”, and “interaction”, as possible synonyms for the purpose of
using information from various sources with an objective to
improve extraction of relevant information from the data. We
describe Bayesian estimation as a means to this purpose — to
estimate the value of an unknown random variable, u , given the
series of observations, y1:T = {y1, y2, . . ., yT}, by updating the poste-
rior probability distribution p(u jy1:T) using the Bayes’ rule:

ð1Þ p ujy1:Tð Þ ¼ p y1:Tjuð Þ pðu Þ
pðy1:TÞ

where p(u ) is the prior distribution assumed of the phenomena
before actual measurements, and p(y1:T) is a normalization con-
stant. As the latter is independent of u , it is often ignored for the
posterior distribution or is approximated, the consequences of
which are derived on p. 18 or pp. 118–120, respectively, in Särkkä
(2013). The posterior distribution is obtained by assimilating
observations and prior knowledge. The point estimate is, for
example, the maximum (termed “Maximum A Posteriori”, MAP
estimate) or other similar statistic of the distribution.
Because of the intractability of computing the posterior distri-

bution for the full history of observations, our interest here is in
the marginal posterior distribution of the given state. The states
and related measurements form sequences, which is why the
application of eq. 1 is called sequential Bayesian estimation.
Depending on the marginal posterior distribution of interest (or

measurements available for the state to be estimated), the esti-
mation can be divided into subcategories of smoothing, filter-
ing, and predicting (Särkkä 2013, p. 11). An analogy between
these categories and the typical steps related to the processing
observed and predicted forest inventory data can easily be eluci-
dated (Fig. 1):

� Smoothing distributions — when the interest is in the state
before the current measurement,

� Filtering distributions — when the interest is in the current
state, and

� Predicting distributions — when the interest is in a future
state,

and the current and previous measurements are taken into
account in all three categories.
The sequential Bayesian estimation is carried out using recur-

sive equations, in which the posterior probability distribution of
interest is initialized with the prior and then estimated by repeat-
ing the update and prediction steps to

� update the state by combining the prior and observation likeli-
hoods by the Bayes rule (eq. 1) and

� predict the next state-distribution by propagating the state of
the previous measurement according to the specific transition
model.

The updated probability distribution is obtained by multiply-
ing theprior andobservation likelihoods,whereas thepredicteddistri-
bution is the integral of the products of the probability distributions
associated with the current state and the transition from the previous
to the current state. As elaborated by Särkkä (2013), different Bayesian
filtering and smoothing algorithms adapt these general equations: for
instance, the “updating”and “predicting”equations in thewell-known
Kalman filter (Kalman 1960) assume linear Gaussian models for both
themeasurements and the transition.

1.3. Specifications for the review
While the analogy between Bayesian concepts and forestry

applications has been noted, the juxtaposition of generic con-
cepts and forest inventory applications, as reviewed by Kangas
et al. (2019) for example, highlighted a number of issues that
guided our approach here. In our review, we re-considered
a priori information (i.e., prior in time; Särkkä 2013) with regard
to the options (filtering, predicting, and smoothing) related to
time sequences (Fig. 2a). Typical forest inventory applications
(Fig. 2) add at least another dimension to a priori information:
the spatial element of the forest data that introduces sampling
error to the estimates in addition to the temporal noise in obser-
vations over time. Thus, in addition to accounting for error in a
time series, forestry applications may account for spatially struc-
tured errors in sequential data. For example, kriging (e.g., Cressie
1993) can be seen as a special case of Bayesian inference with the
prior acting as the spatial correlation. A simpler model with a
constant correlation assumption, such as Empirical Best Linear
Unbiased Prediction estimator, is a special case of kriging. All
these are referred to as spatial models.
However, if we consider “prior understanding of the phenom-

ena modelled”, for instance, realized as the model form, then
a priori information must be, at least, three-dimensional. First,
this type of prior knowledge can be related to neighboring trees or
stand(s); for instance, the application of regression models results
in additional information that is essentially new information for
one time point in space, although the estimation can also employ
data from multiple time points (Fig. 2b). Second, all Bayesian mod-
els are weightedmodels and use different inferential methods, and
the model forms produce additional information to estimate the
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state at a time point (Fig. 2c). Third, further information could be
based on the prediction of results for smaller computation units
using the whole dataset of a large area-of-interest, i.e., using a
“small area estimation” type of method (Fig. 2d). Building upon
these considerations and attempting to verify our stated hypothe-
sis on the temporal versus spatial dimensions of a priori informa-
tion, we searched for published papers that considered Bayesian
estimation for sequential observations in time and space.
In addition, we found that it was useful to contrast between

approaches that were formally defined as Bayesian data fusion
and those termed ad hoc methods. For the latter, we refer to the

Cambridge Academic Content Dictionary (Cambridge University Press
2017) that defines ad hoc as a method “for a particular purpose or
need, especially for an immediate need”. By this distinction, we
acknowledged that the tasks outlined in Figs. 1–2 can be accom-
plished by means of a method (chain) that is mathematically less
reasoned but was selected due to its simplicity to solve the partic-
ular task. We wanted to determine the possible benefits of for-
mally defined Bayesian methods that associate the data points
with the probability or uncertainty of the event. Therefore, we
categorized studies that without any supporting information,
weighted data points equally as ad hoc methods. The latter

Fig. 1. Schematic diagram of a forest time-series between current (t) and previous time points (t – 1) that will be predicted into the future
(t + 1). Example forestry dynamics to be predicted include forest operations (clearing of trees on the left side of the plot), mortality
(brown tree crown in the middle), survival and growth of remaining trees, and ingrowth of small trees. If the trajectory is considered
generically as a time-varying system, the concepts of smoothing, filtering, and prediction (Särkkä 2013) can be identified as shown in
Fig. 1. The up- and downward brackets in the diagram indicate the time points used as inputs and obtained as outputs, respectively.
[Colour online.]

Fig. 2. Schematic diagram of (a) the filtering and smoothing concept adapted from Särkkä (2013), where the sequence of hidden states at time
points t – 1, t, and t + 1 is inferred through noisy observations with a (linear) temporal element but no spatial element(s). Three subfigures
illustrate the spatial element that should be considered when employing these concepts in typical forest inventory applications. Arrows
indicate the possible desired outputs of using circular plots at varying time points and located in an area of interest outlined by a solid black
line in (b) regression modelling of a variable of interest y using covariate(s) x, coefficients b , and error term e, (c) large area estimation for
population total or mean (m ) based on inclusion probabilities p and observations of y from plots {i} in the area, and (d) small area estimation,
where the aim is to predict for subpopulations of interest i using the observations and estimators derived from those subpopulations, In panel
d, kriging would be a point estimate based on spatial correlation.
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category includes the maximum likelihood of the joint probabil-
ity of measurements, which can be seen as a MAP estimate with
uniform prior (Särkkä 2013).

2. Systematic review
In this review, we used a systematic keyword search to approxi-

mate the extent that the algorithms proposed for the Bayesian
approach are used in forestry versus other disciplines. The con-
struction of the literature search and its findings are described in
supplementary Table S1 and supplementary Fig. S21, respectively.
Based on the search, we found a total of 21 articles for qualitative
analyses that were required to be related to forest attributes with
ground truthing, i.e., we excluded those articles related to land use
and (or) land cover or similar classifications based on remotely
sensed data. The resulting studies ranged from the estimation of
forest stand characteristics to forest inventories and classification
of species, including a varying number of data points and sources.
Data types varied between simulated and observed data but were
mainly based on inventory sample plots where the parameters of
interest weremeasured. The studies weremostly focused on boreal
forest, but all biogeographical zones (Boreal, Temperate, and Tropi-
cal) were covered.
The list of studies that could be compared in terms of improve-

ment or the rate of error change in percentage points, computed
as the difference between two relevant error rates thereby dem-
onstrating the improvement from the reference method or sin-
gle point in time by means of Bayesian or similar methods, is
shown in Table 1. The root-mean-square error (RMSE) was consid-
ered as the main error criterion; in cases where it was not stated
in a publication, an alternate error measure (e.g., coefficient of
variation, variance, error ratio, or error increase or decrease
based on some benchmark criterion) was recorded. If multiple
forest variables were evaluated within a particular study, we ei-
ther selected the inventory variable of main interest, the variable
considered most representative among the multiple variables
studied, or the variable that was most comparable between stud-
ies (usually the growing stock volume or aboveground biomass).
In the “Sequence” column of Table 1, we indicated the main

dimension (temporal or spatial) of the variability accounted for

by the studied methods. Hou et al. (2019) could not be unambigu-
ously classified, as the improvement noted for that study was
essentially based on information from another model rather than
from these dimensions. In addition to the studies listed in Table 1,
there were similar cases that could not be strictly assigned as tem-
poral or spatial considerations, which is reflected in the subtitle
structure of the qualitative review (Section 3). We found studies
that used the Bayesian approach in an abstract form without com-
paring it to other statistical approaches (de Groot et al. 2019;
Mölder et al. 2019), reporting an improvement (compared with
another study or within their study), or whether the method was
effective. Some studies did not report ameasure that could be com-
pared to those in Table 1, although improvements due to the use of
the Bayesian method or data fusion were reported (Uusitalo et al.
2006; Picard et al. 2012; Lu et al. 2019). Further, the results of two
studies were reported at the individual tree level (Picard et al. 2012;
van Oijen et al. 2005), whereas Table 1 covered studies reported at
the area level. The studies listed in this paragraph were not
included in the summary table, but are nevertheless qualitatively
reviewed below.
The error measures shown in Table 1 varied from 2.3% to 38.4%,

with a median of approximately 13%. The rate of error change
(improvement) ranged from 1% to �57%, with a median of 4.7%.
The number of time points varied by up to 25. The time span in
studies with multiple time points varied from 2 years to a maxi-
mum of 40 years (observed, Babcock et al. 2016) or 50 years (simu-
lated, Ehlers et al. 2013) between data acquisitions. For growing
stock volume estimations, Katila and Heikkinen (2020) utilized
the greatest number of sample plots (42 541) to cover the largest
area of interest. The computation units in Ver Planck et al. (2018)
were stands that varied from 0.6 to 47 ha, with an average size of
6.6 ha.
In attempting to schematize the time, space, and improvement fac-

tors in Table 1, we noted that the largest (>10 percentage points)
improvementswere reported based on relatively small datasets (num-
ber of plots� plot size<15 ha and total inventory area ≤10000 ha). In
contrast, the least improvements were reported for the National For-
est Inventory (NFI) or similar inventory contexts where the area cov-
ered hundreds of thousands or millions of hectares. Between these

Table 1. Synthesis of the reviewed studies.

Study Sequence Variable AOI (ha) CU (m2) Plots Tp TSp (years) Error (%) Rate (pp)

1. Junttila et al. 2008 Spatial GSV (m3·ha�1) 1 200 254 472 1 0 19.90 1.00
2. Finley et al. 2013 Spatial GSV growth (Mg·ha�1) 15 782 80 451 1 0 2.33 1.20
3. Babcock et al. 2015 Spatial AGB (Mg·ha�1) 10 472 200 62 1 0 38.43 1.77
4. Katila and Heikkinen 2020 Temporal* GSV (m3·ha�1) 18�106 100 42 451 3 4 3.02 2.00
5. Fortin 2020 Temporal GSV (m3·ha�1) 537�103 113 180 4 9 2.28 2.09
6. Ehlers et al. 2013 Temporal GSV (m3·ha�1) �106** 400 8 793 25 50 11.16 3.13
7. Finley et al. 2008 Spatial AGB (Mg·ha�1) 1 053 1000 437 1 0 27.71 4.43
8. Nyström et al. 2015 Temporal GSV (m3·ha�1) 1 500 314 15 131 6 8 13.50 4.70
9. Vastaranta et al. 2018 Temporal* AGB (Mg·ha�1) 2 000 256 332 2 2 20.40 5.60
10. Lindgren et al. 2017 Temporal GSV (m3·ha�1) 1 200 314 137 19 4 30.00 6.00
11. Kangas et al. 2020 Temporal AGB (Mg·ha�1) 853 200 174 2 11 3.10 6.22
12. Varvia et al. 2017 Spatial GSV (m3·ha�1) 10 000 255 492 1 0 17.70 10.30
13. Babcock et al. 2016 Temporal Spatial AGB (Mg·ha�1) 1 600 78 604 40 40 17.52 25.36
14. Hou et al. 2019 Other (model)* Mean height (m) 56 22 200 1 0 9.59 33.00
15. Ver Planck et al. 2018 Spatial AGB (Mg·ha�1) 1 500 66� 103 195 1 0 10.60 56.90

Note: “Study” denotes literature reference by author name and year. “Sequence” denotes the type of sequential information (temporal, spatial, other; asterisks (*)
in this column indicate that the method did not belong to the Bayesian school). “Variable” denotes the forest variable of main interest; GSV, growing stock volume;
AGB, aboveground biomass. “AOI” denotes inventory area for which the results were generalized (** indicate that the results were not reported in the study, but were
assumed to be related to the national forest inventory context, i.e., at a scale of millions of hectares). “CU” denotes the area of the initial computation unit. “Plots”
denotes the number of sample plots. “Tp” denotes the number of time points. “TSp” denotes the time span of the acquisition from the first to last data point in years.
“Error” denotes the initial error rate. “Rate” denotes the improvement due to the inclusion of additional time points or methodological changes. The latter
parameter was computed as the difference (in percentage points, pp) between the error rate before and after the application of data fusion.

1Supplementary data are available with the article at https://doi.org/10.1139/cjfr-2021-0145.
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scales, therewas a notable absence of studies that considered regional
scales or larger datasets that modelled small areas. The rate of the
error change seemed to benefit from expansion of the temporal
dimension by increasing the number of time points, but especially by
increasing the interval of the updates. We came to this conclusion by
comparing the rates of error change in studies 5 and 11 (with approxi-
mately 4.5 and9years betweendata acquisitions, respectively) to stud-
ies 8, 10, and 13, which reported more frequent data acquisitions.
However, the remarks above should be treated with caution due to
the small number of studies thatmeasured different aspects.

3. Qualitative review of Bayesian methods and
applications for forest variable estimation

3.1. Filtering and data assimilation
Bayesian or Kalman filtering (Kalman 1960), also termed Data

Assimilation (DA), was introduced for forest variable estimation
by Dixon and Howitt (1979) and for forest inventory data updat-
ing and forest monitoring by Czaplewski et al. (1988). Gertner
(1984) used filtering to merge forest growth estimates with obser-
vations. Interestingly, the motivation for his study was the rela-
tive inexpensiveness of utilizing growth projections compared to
the collection of new observations, and the need for a method
that was not as restrictive as the Kalman filter in terms of the
model forms and data; both aspects were re-invented in later
studies (Section 3.1.1). The work was further refined by the identi-
fication of samples to be collected in the future (Gertner 1987), by
updating the model parameter estimates of the different growth
projections (Gertner 1987; Gertner et al. 1999), and by dealing with
uncertainty in both a priori or sampled information (Gertner and
Zhu 1996).VanDeusen (1987) employed the Kalmanfilter to analyze
dendrochronological time series. Kangas (1991) also presents one of
the early filtering approaches, while Green and Strawderman
(1992) utilized posterior distributions in Bayesian analyses. The
Bayesian filtering and smoothingmethods have been used inmany
fields of science (e.g., health sciences, ecology, learning, or adaptive
systems) to employ prior and future observations (Särkkä 2013).
In some studies, Kalman filter and Bayesian methods were used

in amanner that would suggest they were two different approaches
(see Ehlers et al. 2013; Nyström et al. 2015; Fortin 2020). However,
according to Särkkä (2013), these can both be classified as Bayesian-
inference-based methods, where the Kalman filter falls under gen-
eral Bayesian theory (see Section 1.2). It is important to note that
smoothing andfiltering are concepts of sequential Bayes estimation
over time using incrementalmeasurements (time-series data taking
into consideration past and current observations) and should not be
confused with the same terms as used in image processing or simi-
lar contexts. It is also worth noting that the use of formalism of
time-varying measurements is for illustrative purposes and is not
strictly adhered to or applicable to other sequential data types.

3.1.1. Applications of time-series filtering to stand-level inventories
Work by Ehlers et al. (2013), Nyström et al. (2015), and Lindgren

et al. (2017) illustrated the potential benefit of DA for stand-level
forest inventories with remotely sensed support data. Ehlers
et al. (2013) tested two methods: a general Bayesian (providing
distributions) and an Extended Kalman Filter (EKF; did not pro-
vide distributions but estimated mean and variance) with simu-
lated data. When the two methods were compared, generally
higher predicted variance values were reported with the Bayes
method compared to EKF. The mean values were nearly equal,
possibly due to the linearization of the growth model by the EKF.
However, the variance depended on the prediction error of the
growth model used. The methodology in this particular case
study performed best in low-precision volume estimates for short
time periods and with the use of an accurate growth prediction
model.

Nyström et al. (2015) tested the EKF approach on empirical
data. Updating past estimates of forest variables with growth mod-
els and integrating those with currentmodels that use DA led to an
improvement in the precision compared to using the target time-
point estimates as such, although the increase was not high com-
pared to the most recent estimate. The study highlighted that DA
can be based in multiple Bayesian filtering approaches, but that
the properties of the method affect the applicability. As explained
in Section 1.2, the standard Kalman filter assumes Gaussian (nor-
mal) distribution both for the predictions and measurements, and
for linear forecasting models. As many forest variables cannot be
assumed to be normally distributed, the EKF approach based on
the Taylor approximation is applicable to non-linear forest growth
models (Lindgren et al. 2017).
The follow-up study by Lindgren et al. (2017) was motivated by

improved data availability, as they used alternative remote sens-
ing data (Synthetic Aperture Radar) and Bayesian updating to pre-
dict the interval before the next optical remote sensing dataset
was available. The time series of Nyström et al. (2015) consisted of
six observations over 8 years. While 19 observations over 4 years
(Lindgren et al. 2017) can be considered an improvement, it is still
far less than in other study fields that use DA (e.g., engineering,
signal processing, andmeteorological fields).

3.1.2. Applications of time-series filtering in National Forest Inven-
tory contexts
Fortin (2020), building upon the stand-level experiences of the

Bayesian methods reviewed above, increased the NFI sample size
by updating the sample plots from past inventory campaigns,
which were then used in combination with the new plots. Use of
the updated plots increased the precision of the estimates, and
the Bayesian method yielded similar improvements (best-case
coefficient-of-variation �2.28) compared to a multiple imputa-
tionmethod. A similar value (2% error reduction) was reported by
Katila and Heikkinen (2020) who fused historical data to Finnish
MS-NFI estimates of growing stock volumes. This is the number
of municipalities with significant estimate error reduction based
on a generalized least squares estimator, which used the covari-
ance matrix to determine the weighted average from three time
points. The performance was possibly hindered by the relatively
short time series of only three time points. Although the data
fusion concept was not explicitly Bayesian, it follows the same con-
cept of using prior data to improve existing estimates. Hou et al.
(2021) list several methodological benefits of a procedure based on
Bayesian DA with linear mixed models to combine results from a
rotating panel inventory, measured in a cycle of 5–10 years, to a sin-
gle date under a given sampling error requirement.

3.2. Time-series smoothing
As strictly defined by Särkkä (2013), diverse types of smoothing,

such as specifically fixed interval smoothing (that uses all obser-
vations available for a specific target to make an estimate), fixed
lag smoothing (implements latency in the steps, and uses the cur-
rent values to update the earlier steps, and so on), and fixed point
smoothing (starts as a Kalman filter, but at a specific point begins
to backward update all previous measurements), were absent
from the review. When the concept of smoothing is considered
more generically, the study by Mäkinen et al. (2010) can be fitted
to this category. In that study, forest data mining techniques
were used to detect outliers in compartment-wise field inventory
data. This approach is closely associated with machine learning
concepts in identifying hidden patterns and undiscovered struc-
tures within a dataset. Suty et al. (2013) used past measurement
data to investigate the bias introduced by field protocols to stem
volume increment estimates for the Swedish NFI. The simula-
tions in the study indicated that both the permanent and tempo-
rary types of inventory sample plots were insensitive to random
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measurement errors, although a theoretical chance of bias for
larger trees was identified and attributed to the scarcity of these
observations in the empirical inventory data. Neither Mäkinen
et al. (2010) nor Suty et al. (2013) could be categorized as employ-
ing a Bayesian approach, but both shared similar aims with the
smoothing concept in that they attempt to improve data reliabil-
ity by investigating current and prior observations. Therefore,
the concept of Bayesian smoothing could possibly be studied fur-
ther to fit these types of applications.

3.3. Time-series prediction
Future predictions are an important use of forest inventory

data, in addition to the various statistics related to the current
state of forest resources (Kangas et al. 2019). Although it was diffi-
cult to isolate the exact predicting and updating steps in the
frameworks reviewed, forecasting state time behavior that has
not yet been measured can be obtained by iterating the predic-
tion step of the optimal filter (Section 1.2; see also Särkkä 2013).
Below, we review the studies that used Bayesian approaches in a
somewhat similar way to the generic concept described above.
An exhaustive European-wide study of growthmodels (van Oijen

et al. 2005) benchmarked Bayesian calibration, Bayesian model
comparison, and Bayesian model averaging (BMA; see also Leamer
1978; Fragoso et al. 2018) to account for either the parametric or
structural uncertainty of the growth models. In particular, BMA
provides a robust approach to predict forest growth, as it assimi-
lates predictions by the empirical or process models as weighted
averages with weightings that relate to posterior probabilities (see
also Section 3.4). Lu et al. (2019) used the BMA method to model
tree mortality in relation to environmental factors. According to
Lu et al. (2019), stepwise regression was found to predict tree mor-
tality less accurately than BMA; the latter exhibited a more narrow
and reliable confidence interval, and greater accuracy associated
with parameter estimation, which was clearly shown by the poste-
rior probability.
Minunno et al. (2019) applied DA to calibrate process-based for-

est growth predictions based on NFI and permanent growth
experiment data. The calibration guided the parameterization of
the process model closer to experimental conditions, thus reduc-
ing uncertainties related to model outputs. In an area-based ma-
trix model, European Forestry Dynamics Model (EFDM; Packalen
et al. 2014), the transition matrix for forest stands between the
states that represent forest development was estimated through
a Bayesian procedure by two consecutive observations. The
Bayesian approach of EFDM is connected to recursive filtering in
the case of insufficient NFI plot data — in that case, the prior,
computed from the observations or assumptions, is applied to fill
the transition probabilities. Aside from making predictions,
their up- or downscaling may be desired. Tian et al. (2020) theo-
retically demonstrated the breakdown of stand growth to indi-
vidual trees using Bayesian calibration of a whole-stand growth
series with diameter distribution of one time point.
Bayesian methods become useful for future predictions that

involve uncertainty in the model predictions and inventory
observations. Nyström and Ståhl (2001) showed that Monte-Carlo
simulation could estimate error propagation in growth models
that often need extensive simulation to obtain reliable estimates.
Quantifying and reducing uncertainty (Section 3.5) requires com-
putational considerations, as reviewed by van Oijen (2017) and
summarized in Section 3.6.

3.4. Using spatial sequential data and other information
Many of the Bayesian approaches applied in the reviewed stud-

ies did not fit within the structural definition of system state and
time as defined by Särkkä (2013). In addition, our review high-
lighted many other Bayesian approaches that have been used for
different types of inferences, which could not be categorized as
accounting for temporal or spatial variability. Below, we review

the approaches based on spatial data and those categorized as
benefiting from additional information from othermodels.

3.4.1. Using spatial sequential data
Finley et al. (2008, 2011, 2013, 2014) and Ver Planck et al. (2018)

sought an initiative template for spatially explicit modelling of
forest variables at the landscape-scale through remotely sensed
covariates. For instance, Finley et al. (2014) modelled spatially
misaligned light detection and ranging (LiDAR) data and sample
plots to yield predictive maps for biomass-related attributes. The
Bayesian hierarchical approach allowed the uncertainty in forest
canopy height metrics and variables measured from inventory
plots to be associated with the candidate models. Predictions based
on the posterior predictive distribution sampling averaged parame-
ter estimates over uncertainty. The increasing prevalence of correla-
tion structures between response variables, which could otherwise
lead to poorer data fits, was successfully addressed. This concept,
however, was limited by the computational workload of a complete
multivariate geostatistical model, which resulted in the use of only
50%of the dataset (see Finley et al. 2008).
Babcock et al. (2016) used a Hierarchical Bayesian Modelling

concept to couple LiDAR and long-term forest inventory data.
That study, as well as the studies described in the previous para-
graph, was based on the Markov chain Monte Carlo (MCMC; see
also Section 3.6.) approach as a numeric method to sample from
the predicted posterior distributions of aboveground biomass to
compute statistics related to mean, variance, and credible inter-
vals of the distributions. The method is relatively easy to imple-
ment for sequential DA with the Bayesian system, and it allows
for appropriate complex parameter associations and the propa-
gation of uncertainty on through to prediction.

3.4.2. Using additional information from another model or inferen-
tial method
A number of variants that worked under the same principles

but were not strictly in Bayesian formalism were identified in
our review. First, the studies of van Oijen et al. (2005) and Picard
et al. (2012) can be regarded as data fusion of multiple models to
retrieve a fused, single estimate of the variable of interest. In
their abstract, Minunno et al. (2019) referred to this principle as
“model data assimilation”. In the BMA approach (Section 3.3.), a
weighted average of probability density functions, based on the
individual predictions, is the predictive function of the quantity
of interest. The weightings of themodels that produce the predic-
tions are equal to the posterior probabilities. The BMA predictive
variance can be split into two parts: one corresponding to the var-
iability between the models and the other to the variability
within the models. Notably, Katila and Heikkinen (2020) used a
similar concept for improving the estimate, and both studies
reported a small but consistent improvement in the forest vari-
ables of interest.
As an alternative to text book Kalman filtering, Hou et al. (2019)

employed DA by incorporating seemingly unrelated regressions
(SUR) and best linear unbiased prediction (BLUP). The justification
to develop this approach was to circumvent the need for the con-
tinuous collection of observations before updating bymeans of Kal-
man filtering, which might not be operationally feasible with the
non-permanent network of sample plots. Junttila et al. (2008) and
Zhao et al. (2020) used a Bayesian regression technique called
Sparse Bayesian Modelling (Tipping 2004), where the model was
designed to compare various weighted combinations of feature val-
ues with each other to obtain optimumweight distribution and an
optimum collection of features. When used in different forest
zones (as in Zhao et al. 2020), the method showed equal efficiency,
especially when limited sample plots were available. Finally, Bayes-
ian spike-and-slab regression (Mölder et al. 2019) is an option to uti-
lize a priori information inmodelling. Spike and slab (Mitchell and

444 Can. J. For. Res. Vol. 52, 2022

Published by Canadian Science Publishing

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

H
E

L
SI

N
K

I 
U

N
IV

 o
n 

05
/0

5/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



Beauchamp 1988) refers to the type of prior regression coefficient
used in linear regression models. These terms assume that the
regression coefficients are mutually independent with a two-point
mixture distribution that consists of a uniform flat distribution
(slab) and a degenerate distribution at zero (spike). This method is
particularly useful when the number of possible predictors is
greater than the observations.

3.5. Managing uncertainty
Bayesian methods allow more flexible management of uncer-

tainties in parameter estimates than the more frequently used sta-
tistical approaches. These features are specifically reviewed here,
because comprehensive uncertainty analysis would decrease the
chance of non-optimal decisions in various applications, such as
ecological risk assessment, forest planning, inventory sampling
design, and environmental decision support. The Bayesian school
offers a quantitative measure of uncertainty (on the basis of avail-
able evidence) as the probability around an estimate. Conceptually,
the notation is close to the frequently used confidence interval con-
cept, which is interpreted (e.g., with 95% confidence level) such
that in 95% of hypothesized repeats of the experiment, the true
(unknown) estimate would lie within the lower and upper limits of
the interval (the parameter is a fixed value and the limits are ran-
dom values). Interpretation of the Bayesian credible interval in a
corresponding case would be that the true (unknown) estimate lies
with 95% probability within the interval (the estimated parameter
is a random value, while the limits are fixed). The credible interval
is dependent on the evidence provided by the observed data, and it
corresponds to the confidence interval in case of uninformative
(uniform) prior (cf. discussion of maximum-likelihood and MAP
estimates on p. 18 of Särkkä 2013).
Theoretically, the inclusion of a large number of data streams

into the assimilationmay enhance the data fusion result, although
the addition of data at different scales may cause bias or inconsis-
tency between the content of various data observations, or among
the input data and the processing model (MacBean et al. 2016).
Thum et al. (2017) found an inconsistency when assimilating both
annual increment and total biomass data to improve the broader
period of mortality and turnover processes. Minunno et al. (2019)
demonstrated a reduction in the uncertainty of parameters after
applying the calibration.Therefore, it is essential to detect whether
DA of one data stream produces a better or worse fit, and whether
this should lead to the determination of an optimal fit among the
datasets.
Varvia et al. (2017) used the Bayesian approach to investigate

the feasibility of posterior probability density and point estimate
measures for area-based forest attribute estimation at the plot
level. Posterior variances and credible intervals were generated
for species-wise growing stock volumes and used for uncertainty
analyses. The study found that the Bayesian 95% credible interval
provided a reliable measure for the estimated uncertainty when
the training datasets were well distributed with a species-wise
compartment. The point estimate of various species-specific for-
est variables was less accurate compared with a benchmark k-
nearest neighbor estimate, although the Bayesian point estimate
yielded a more accurate estimate for the total figure (i.e., all
forest species summed-up) and, overall, the ability to report cred-
ible intervals could be considered an asset. Themethods underes-
timated the abundant tree species (e.g., pine) and overestimated
the less frequent tree species (e.g., deciduous). Regardless, the
method exhibited equal robustness compared to other state-of-
the-art methods for forest inventories.
Similarly, Mäkelä (2020) addressed the uncertainty in ecosystem

modelling through the Bayesian approach of canonical correlation
analysis (Hotelling 1936), which is a technique for detecting correla-
tions between twomultivariate or randomvariables and extracting
linear components that represent the correlation. The method was
equally useful in identifying the uncertainty caused by varied

factors on ecosystem modelling. For instance, it found that forest
management was the dominant factor that contributed to the
uncertainty in the study. The idea of identifying uncertainty ele-
ments is intriguing, especially with Bayes, as illustrated by Varvia
(2018) andMäkelä (2020).

3.6. Computational aspects
In summary, the adoption of a Bayesian approach requires that

the modelling framework is defined as probability distributions
of parameter uncertainty. Skewed and multi-dimensional distri-
butions result in a high computational demand, which requires
advanced algorithms (van Oijen 2017). Aside from extensions
(e.g., EKF described above), alternative approaches are available.
When propagating errors in growth models, Nyström and Ståhl
(2001) assumed Gaussian distributions, although other forms of
distributions could lead to intractable calculations following
their approach. Motivated by these drawbacks, Gove (2009) re-
formulated the approach based on sequential Monte Carlo filters
(particle filters) to allow for nonlinear, non-Gaussian assump-
tions, as well as the integration of new inventory information
with model predictions. The presented filter is close to a regular
Kalman filter but differs in the sampling mechanism, in which
many particles generated by Monte Carlo methods represent ran-
dom variation, while a small deterministic sample of the stated
space is taken to estimate themean and covariance of each state.
Somewhat cognate to the above-reviewed methods, Gibbs sam-

pling reduces the impractical restrictions of the Kalman filter for
real-world data analyses and was used by Green and Strawderman
(1992). It was also employed by Liénard et al. (2015) to parameterize
biomass transition matrices from forest inventories to predict for-
est development under disturbances (see also Liénard and Strigul
2016). Itter et al. (2017, 2019) proposed a hierarchical model struc-
ture for the radial growth of individual trees. Their model hierar-
chy was built from fixed stand and tree parameters and climate
parameters that evolve over time, thereby affecting the stand and,
subsequently, tree growth. The model parameters were solved
and updated by means of MCMC and Gibbs sampling, which is
described in detail in appendix S1 in Itter et al. (2017).
As elaborated by van Oijen (2017), the application of Bayesian

methods to more complex problems over time has shifted think-
ing from exact solutions of a single parameter vector to algo-
rithms that approximate these parameters. The idea of MCMC, in
brief, is to explore the parameter space toward the highest poste-
rior probability, where the prior multiplied by the likelihood for
that parameter vector guides the representative sampling from
the posterior distribution. Yet, our review also noted more deter-
ministic alternatives to MCMC. For instance, de Groot (2019) mod-
elled spatially explicit forest management history and pest
control by means of Integrated Nested Laplace Approximations
(INLA; Rue et al. 2009), which is an alternative to theMCMC-based
statistical inference in latent Gaussian models. The key benefit of
INLA is that it has simpler computation based on individual poste-
rior marginal model parameters, thereby avoiding posterior predic-
tive simulations, and so permits rapid and accurate computations
(Nothdurft 2020). Indeed, Nothdurft (2020) estimated annual radial
increments with a hierarchical model motivated by Itter et al. (2017,
2019), but that was solved by the INLA approach. We include this
here as an example of how the Bayesian method can reduce struc-
tural uncertainty and simplify the process involved.

4. Discussion

4.1. Summarized key findings and limitations of the review
We used exact search terms based on Särkkä (2013) to discover

relevant literature for the quantitative analysis. The success of a
literature review depends on whether the concept and algorithm
names were used in the published studies. We believe that our
choice here was successful, since the search results had to be
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augmented by only a few papers in the qualitative analysis.
According to our literature search results, there is a clear trend
that studies employing Bayesian methods are slowly increasing.
However, the adoption of these methods appears to be less com-
mon in forestry than in other disciplines, in particular remote
sensing. It was previously identified that the possibilities to use
Bayesian filters to evaluate the past and to predict the future are
not commonly recognized in forest inventories or related studies
(Kangas et al. 2019).
Themedian error change due to the introduction of a Bayesian or

ad hoc approach for data fusion was 4.7 percentage points (Table 1).
There was a strong variation between studies and the degree of
improvement depended, for example, on the type of data, the forest
variables of interest, target species, sample size, and study design.
No more detailed numeric recommendation (such as a model
explaining the performance) could be developed based on a meta-
analysis, as the results varied considerably with regard to the
aforementioned aspects. Therefore, it is important to give due
consideration to the various characteristics of the experiment
that is under study.
A detailed examination of Vastaranta et al. (2018) provides an

example on how difficult it was to assign some of the studies in
Table 1. In their work, they combined new inventory data from
2016 with older data collected in 2014 and updated to 2016 by a
growth model. Their reported RMSE values improved from 26.0%
(based on the use of 2016 data alone) to 20.4% with best-case
weightings for the combination of the two datasets. This equates
to an error change of 5.6 percentage points and was, therefore,
included in Table 1. However, according to Vastaranta et al.
(2018), merely updating the 2014 dataset would have yielded a
change in 11.4 percentage points (from an RMSE value of 33.2%
based on validation of the 2014 models with 2016 data to 21.8%
based on the 2014 data updated with the growth model). There-
fore, the improvement in RMSE attributable to the acquisition of
new data, from 21.8% (best-case result with one time point) to
20.4% (best-case with two time points), is equal to 1.4 percentage
points. This is in line with the other studies presented in Table 1
and indicates that the values included in our table may depend to
some extent on the reporting practices of the individual studies.
In our review, we ignored many factors related to forest status,

such as site index, management, and development stage. On the
one hand, we noted that the comparison of relatively similar
studies (cf. Junttila et al. 2008 and Varvia et al. 2017; in terms of
forest conditions and sample plot data) based on different Bayes-
ian approaches yielded very different results. Junttila et al. (2008)
reported an initial RMSE value of 19.9%, while Varvia et al. (2017)
reported a value of 17.7%, and improvements of 1 and almost
10 percentage points, respectively. On the other hand, Hou et al.
(2019) reported a 33% reduction in the RMSE value compared
with non-calibrated values in juvenile forests, which are gener-
ally considered a difficult target. It is possible that predictions of
forest stand characteristics, such as growing stock volume based
on high-resolution auxiliary data, such as LiDAR are already
highly accurate and may be difficult to improve upon, although
the methods could differ in the prediction of species-specific and
minor species’ properties (although see Varvia et al. 2018 for con-
tradictory results). Yet, the results described above also indicate
that there are considerable differences within the Bayesian pro-
cedures that should be further explored.
Compared to some ad hoc methods included in the review, we

did not find strong numeric evidence for better performance in the
prediction of forest variables by the various Bayesian approaches.
This result may be partly because we compared a variety of meth-
ods for different prediction tasks. However, our review highlighted
the interpretation of the prior information compared to the theo-
retical representation (Sections 1.2. and 1.3; Särkkä 2013). In Table 1,
greater improvements were more frequently observed by the
Bayesian approach with data from a single time point rather than

employing a time series. In these cases, the prior information ei-
ther originated from spatial data outside the computation unit,
from another model (BMA, SUR) or from other relevant informa-
tion (location accuracy). Lower gains were observed for inventories
that were employed at larger scales, where the sampling error may
be the dominant source of error. Lower gains were also observed
with large datasets and higher gains were noted with small data-
sets, where the original uncertainties can obviously be greater. This
finding may suggest that the additional spatial information from
neighboring trees or stands at one time point is more useful than
actual prior information in time. However, this may require con-
firmation from studies where these aspects were specifically con-
sidered. The result could be explained by additional sources of
variation that accrue from the requirement to use several data
acquisitions over time, rather than just one used in space. At the
national level, several acquisitions include remote sensing cam-
paigns with different parameterizations that may result in addi-
tional variation.

4.2. Utilizing the full potential of Bayesianmethods
Even though the adoption of a Bayesian approach resulted in

unexpectedly small numeric benefits, it may rationalize the anal-
yses by accounting for the features of the Bayesian approaches
that we identified in the Introduction section. In summary, one
of the more promising disciplines of sequential Bayesian estima-
tion is when evaluating observations at varying points in time;
Särkkä (2013) approached optimal filtering and smoothing as the
least-squares optimality of the posterior distribution of states of
a system observed through marginal distributions of noisy, time-
varying measurements. The estimate of the state space is affected
by the prior probability distribution, transition probability distri-
bution (a Markov chain), and measurement model. Särkkä (2013)
further lists several numerical approximation methods (or cate-
gories) that can be operated based on different assumptions. In
the following section, we consider how some of these properties
are exhibited in related forestry studies.

4.2.1. Prior
The prior distribution, or assumptions on information used as

the prior, was identified to have a major role in delivering accu-
rate results. For instance, validations carried out over very differ-
ent geospatial scales (e.g., Nyström et al. 2015; Fortin 2020) all
denote the significant contribution of an accurate growth model
toward good performance. In DA studies, the variance related to
growth predictions has generally been smaller than the sampling
variance related to the acquisition of new plots, which has led to
an emphasis in the utility of updating the plots with the growth
model over the acquisition of new data. Yet, when focused only
on the growth model, the meaning of prior is considerably nar-
rower, and analyses could potentially be improved by re-thinking
its meaning and role. Firstly, because of the long history of forest
inventories, we always have some prior information to narrow
down the interval of possible results. Secondly, even a minor
degree of prior information can be useful when it is used judi-
ciously: for instance, in imputing-like fashion with observations
to fill gaps due to sparse field sample in NFI-based forest develop-
ment matrices, which has been proposed by Packalen et al. (2014)
and was applied as part of the EFDM software, for instance, by
Vauhkonen et al. (2019).

4.2.2. Change model
In the context of estimating forest variables, the findings of

Fortin (2020) and Kangas et al. (2020) suggest that the growth
model should actually be considered as the “change model”, as it
is used to predict all possible changes in the forest stand during
the growing period; therefore, abrupt changes in forest condi-
tions need to be addressed. Notably, both Fortin (2020) and
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Kangas et al. (2020) suggest disturbances (both natural and for-
estry operations) are the most difficult changes to model. If har-
vests in the past sample-plot data could be detected, and the
difficulties associated with this task were acknowledged, then
the use of prior data could be expected to yield more accurate
results (Kangas et al. 2020; Fortin 2020). A sudden change in the
forest stand (e.g., clear-cutting) can be relatively easy to detect
from plotted time series, whereas it can be difficult to model for
future development within the overall utilized modelling
scheme. For that reason, Fortin (2020) used a harvest probability
model rather than observations obtainable from a GIS database.
Driven by the possibility to continuously update the posterior
distribution by new observations from harvesters (e.g., Uusitalo
et al. 2006), more observations from actual harvests could be
expected. Yet, the inability by most current forest development
models to consider disruptive events can be seen as a limit to
their use in updating forest inventory data (Fortin 2020). Indeed,
Fortin (2020) and Kangas et al. (2020) were among the first studies
to take changing forest conditions (including harvests) into
account in DA, and it is reasonable to expect further develop-
ments on these aspects in the future.

4.2.3. Weighting of the prior and new observations
With filtering, it has been accepted that the combined use of

past and current inventory data produces more accurate estima-
tions (Ehlers 2013; Lindgren et al. 2017; Nyström et al. 2015),
although Kangas et al. (2020) did not find this to be self-evident.
To gain benefits, the estimates from the different time points or
data sources must be properly weighted, which is typically caried
out by assigning weightings (inversely) proportional to the var-
iance of the different estimates. Work by Lindgren et al. (2017)
assimilating multiple time points (and the follow-up by Ehlers
et al. (2018) that was based on analyzing the correlations of the
non-independent errors of these estimates) provide ideas and
“rules-of-thumb” as to the value of the weightings. In Lindgren
et al. (2017), the predictions that used past data received a greater
weighting than the new data after two to three assimilations
(depending on the forest attributes), and the weighting placed on
new acquisitions was <10% after �seven acquisitions. Although
the performance varied in estimating forest attributes based on
single data acquisitions, the variation associated with the assimi-
lated result decreased and stabilized after the first iterations. Yet,
all benefits of assimilating past data were not necessarily visible
due to an underestimation in the variances of inter-correlated
estimates (Ehlers et al. 2018). According to Ehlers et al. (2018), in-
dependent observations based on a different acquisition tech-
nique or estimation method should receive a greater weighting
as they are less correlated. A graphical analysis of the values in
Ehlers et al. (2018) suggests that even two time points based on in-
dependent sensors or modelling should not be treated equally,
i.e., combined with the same weighting, but that the correlation
of the errors should be accounted for in the variance estimates.
In cases of availability and the use of accurate auxiliary data, the
resulting overall error might not be significantly lowered com-
pared to the use of prior inventory data or accurate auxiliary data
(Nyström et al. 2015; Kangas et al. 2020), although the internal
consistency of the estimates could be improved to a degree that
is beneficial for later applications.

4.2.4. Posterior distributions and uncertainty quantification
The use of posterior probability densities, which are also an in-

herent property of many Bayesian methods, creates possibilities
for approaches such as uncertainty assessments. One example
where uncertainty metrics were determined based on the poste-
rior density and point estimates is illustrated by Varvia (2018). In
this study, which was based on a leave-one-out subset of data, the
accuracy of the Bayesian 95% credible intervals was found to be

ideal for uncertainty analyses. One important initial finding of
this study was that the prediction accuracy of the variables may
improve when the variable pools are increased, although this
may reduce the possibilities for uncertainty quantification. On
the other hand, as outlined above, the full utilization of the pos-
terior distribution may require the abandonment of parametric
and Gaussian assumptions that lead to difficulty in solving the
related modelling tasks analytically. As such, there is a subse-
quent need for computationally efficient techniques, such as
MCMC (e.g., Babcock et al. 2016; Varvia et al. 2018). The instructive
example of Varvia et al. (2018), who obtained considerable com-
putational advantages by avoiding exact computations and
pre-computing some parameters, suggests that some of the tech-
niques reviewed above may require similar computational con-
siderations to become operational. Establishing rules as to when
to use a Bayesian or other paradigm would be especially useful
for improving methodological choices for forest variable estima-
tion. This will be a challenge as the choice depends on the appli-
cations and data usage. Moreover, RMSE or bias is not always an
appropriate measure of accuracy. Loss attributable, for example,
to misrepresentation of net present value requires consideration
of the monetary element of these errors. Therefore, the question
could possibly be approached through the concept of value of in-
formation (e.g., Kangas 2010) by computing the (computational)
costs and losses associated with the adoption of a Bayesian versus
an alternative approach.

5. Conclusion
Bayesian approaches have been increasingly utilized in many

applications during the last decade, although less so in forestry
than in the other reviewed scientific disciplines. However, state-
of-the-art data processing frameworks and cross-disciplinary
technologies allow for the integration of remotely sensed and
forest inventory data, which are available at more frequent inter-
vals and produce a longer time series. The Bayesian frameworks
provide the possibility to incorporate prior information, utilize
the posterior distribution, as well as update it incrementally
with more data, and efficiently measure and quantify uncertain-
ties. These properties appear under-utilized in various data
fusion approaches that characterize forest stand conditions.
Thus, more significant contributions from the adoption of Bayes-
ian approaches could likely be reached by developing know-how
and competence in using standard formal methods instead of ad
hocmethods.
We have identified the following as important aspects that

affect the choice of whether to build a time-series analysis con-
cept upon Bayesian formalism: (i) whether a forest variable esti-
mate is treated as a time series or as a time epoch, (ii) access to a
change model that, in addition to forest growth, is able to model
sudden changes due to disturbances, (iii) number of data points
and time span of the time series, acquisition means and optimal
interval for the time points during the total time span, and
(iv) assumed distributions of the data (in particular, Gaussian ver-
sus other). Whether the choice is a Bayesian method, we further
suggest that (v) Bayesian filtering should be combined with
Bayesian smoothing whenever applicable, (vi) uncertainty quan-
tification should be built upon an analysis of credible intervals of
posterior distributions to assess which sources of uncertainty
predominate in forest variable estimation, and (vii) advanced
algorithms can be used for the calculation of numerical approxi-
mations of multi-dimensional integrals to reduce the computa-
tional time due to the adoption of the Bayesianmethod.
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