4 research outputs found

    Formation of calcium phosphate nanostructures under the influence of self-assembling hybrid elastin-like-statherin recombinamers

    Get PDF
    The self-assembling properties of thermally-sensitive amphiphilic elastin-like multiblock recombinamers have been combined with the capacities of calcium phosphate binding of the SN(A)15 epitope inspired by the salivary protein statherin. In this regard, the interaction between calcium and phosphate ions was examined in the presence of two hybrid recombinamers. The first recombinamer comprised a simple amphiphilic diblock in which the SN(A)15 epitopes were combined, at the gene level, to the hydrophilic end. This recombinamer can self-assemble into nanoparticles that can control the transformation of amorphous calcium phosphate (ACP) into a fibre-like hydroxyapatite structure. In the other recombinamer, the SN(A)15 domains are distributed along the monomer chain, with the hydrophilic blocks being distributed amongst the hydrophobic ones. In this case, the resulting nanohybrid ACP/recombinamer organises into neuron-like structures. Thus, combining the amphiphilic elastin-like recombinamers to the SN(A)15 functionality is a powerful mean to tune the formation of different complex calcium phosphate nanostructures.Peer ReviewedPostprint (author's final draft

    Formation of calcium phosphate nanostructures under the influence of self-assembling hybrid elastin-like-statherin recombinamers

    No full text
    The self-assembling properties of thermally-sensitive amphiphilic elastin-like multiblock recombinamers have been combined with the capacities of calcium phosphate binding of the SN(A)15 epitope inspired by the salivary protein statherin. In this regard, the interaction between calcium and phosphate ions was examined in the presence of two hybrid recombinamers. The first recombinamer comprised a simple amphiphilic diblock in which the SN(A)15 epitopes were combined, at the gene level, to the hydrophilic end. This recombinamer can self-assemble into nanoparticles that can control the transformation of amorphous calcium phosphate (ACP) into a fibre-like hydroxyapatite structure. In the other recombinamer, the SN(A)15 domains are distributed along the monomer chain, with the hydrophilic blocks being distributed amongst the hydrophobic ones. In this case, the resulting nanohybrid ACP/recombinamer organises into neuron-like structures. Thus, combining the amphiphilic elastin-like recombinamers to the SN(A)15 functionality is a powerful mean to tune the formation of different complex calcium phosphate nanostructures.Peer Reviewe

    Identification of genetic risk loci and causal insights associated with Parkinson\u27s disease in African and African admixed populations: a genome-wide association study

    No full text
    \ua9 2023 Elsevier LtdBackground: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson\u27s disease in these underserved populations. Methods: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson\u27s disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson\u27s Genetics Program, the International Parkinson\u27s Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson\u27s disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. Findings: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson\u27s disease (overall meta-analysis odds ratio for risk of Parkinson\u27s disease 1\ub758 [95% CI 1\ub737–1\ub780], p=2\ub7397 7 10−14) and age at onset at the GBA1 locus, rs3115534-G (age at onset β=–2\ub700 [SE=0\ub757], p=0\ub70005, for African ancestry; and β=–4\ub715 [0\ub758], p=0\ub7015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. Interpretation: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson\u27s disease in African populations. This population-specific variant exerts substantial risk on Parkinson\u27s disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson\u27s disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson\u27s disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson\u27s disease. Funding: The Global Parkinson\u27s Genetics Program, which is funded by the Aligning Science Across Parkinson\u27s initiative, and The Michael J Fox Foundation for Parkinson\u27s Research

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore