8 research outputs found

    Contribution à l'étude de l'interaction énergie explosive-massif rocheux en vue de la maîtrise de la fragmentation liée aux tirs

    No full text
    PARIS-MINES ParisTech (751062310) / SudocPARIS-BIUSJ-Sci.Terre recherche (751052114) / SudocSudocFranceF

    Microstructure Effect on Hard Rock Damage and Fracture During Indentation Process

    No full text
    International audienceThis paper presents the results of simple and double indentation tests conducted on three hard rocks: granite, limestone and sandstone. The main objective is to analyze the rock behavior under indentation test in relation with the physical and microstructural properties. First, the experimental set-up used during the tests is described as well as the sample preparation. Then, an image analysis based technique is applied on thick sections made from the tested samples in order to evaluate the size of indentation-induced cracked zone and to assess the crack types (vertical or sub-horizontal) below the indenter. The interpretation of the results was made on two levels. First, several physical parameters (energies and displacements) have been derived from the so obtained experimental indentation curves. Very high correlations were found between the loading, indentation and specific energies versus the plastic displacement. Second, cracked zone radius was estimated showing a very high correlation to the specific energy and governed by the physical and mineralogical properties of the tested rocks. Finally, the analysis of double indentation tests proved that changing the distance between two adjacent inserts allows the determination of the optimal spacing producing overlay of cracked zones and causing rock damage and large chip departure

    Petrophysical and Geochemical Investigation-Based Methodology for Analysis of the Multilithology of the Permian Longtan Formation in Southeastern Sichuan Basin, SW China

    No full text
    Against the backdrop of the national strategic goals of carbon peaking and carbon neutrality, the imperative for China’s low-carbon new energy transformation is evident. Emerging as an efficient and clean new energy source, the coal-based “three gases” (coalbed methane, tight sandstone gas, and shale gas) have gained prominence. Nevertheless, the current exploration of the coal-based “three gases” is limited to individual reservoirs, posing challenges to achieving overall extraction efficiency. The primary obstacle lies in the conspicuous disparities in gas content among different reservoirs, with the causes of such disparities remaining elusive. To address this issue, this study focused on the Permian Longtan Formation (coal, shale, and tight sandstone) in the southeastern Sichuan Basin. Through a comparative analysis of the mineral composition, organic geochemical features, and pore structure characteristics, this study aimed to delineate reservoir variations and establish a foundation for the simultaneous exploration and exploitation of the coal-based “three gases”. The research findings revealed that the differences in reservoir characteristics account for the variations in gas content among coal, shale, and tight sandstone. The mineral composition of the rock formations in the study area primarily consists of quartz, feldspar, clay minerals, pyrite, calcite, and dolomite. By comparison, the coal samples from the four major coal seams in the study area exhibited relatively large pore sizes, which are favorable for gas accumulation
    corecore