754 research outputs found
Inversion of Randomly Corrugated Surfaces Structure from Atom Scattering Data
The Sudden Approximation is applied to invert structural data on randomly
corrugated surfaces from inert atom scattering intensities. Several expressions
relating experimental observables to surface statistical features are derived.
The results suggest that atom (and in particular He) scattering can be used
profitably to study hitherto unexplored forms of complex surface disorder.Comment: 10 pages, no figures. Related papers available at
http://neon.cchem.berkeley.edu/~dan
Phylobioactive hotspots in plant resources used to treat Chagas disease
Globally, more than six million people are infected with Trypanosoma cruzi, the causative protozoan parasite of the vector-borne Chagas disease (CD). We conducted a cross-sectional ethnopharmacological field study in Bolivia among different ethnic groups where CD is hyperendemic. A total of 775 extracts of botanical drugs used in Bolivia in the context of CD and botanical drugs from unrelated indications from the Mediterranean De Materia Medica compiled by Dioscorides two thousand years ago were profiled in a multidimensional assay uncovering different antichagasic natural product classes. Intriguingly, the phylobioactive anthraquinone hotspot matched the antichagasic activity of Senna chloroclada, the taxon with the strongest ethnomedical consensus for treating CD among the Izoceño-GuaranĂ. Testing common 9,10-anthracenedione derivatives in T. cruzi cellular infection assays demarcates hydroxyanthraquinone as a potential antichagasic lead scaffold. Our study systematically uncovers in vitro antichagasic phylogenetic hotspots in the plant kingdom as a potential resource for drug discovery based on ethnopharmacological hypotheses
Identification of plant-derived alkaloids with therapeutic potential for myotonic dystrophy type I
Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3 UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of availableMBNL1leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequesteredMBNL1from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1.We identified several alkaloids, including the -carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of theDM1pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases
Counting flags in triangle-free digraphs
Motivated by the Caccetta-Haggkvist Conjecture, we prove that every digraph
on n vertices with minimum outdegree 0.3465n contains an oriented triangle.
This improves the bound of 0.3532n of Hamburger, Haxell and Kostochka. The main
new tool we use in our proof is the theory of flag algebras developed recently
by Razborov.Comment: 19 pages, 7 figures; this is the final version to appear in
Combinatoric
A random cell motility gradient downstream of FGF controls elongation of amniote embryos
Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) has a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation, which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data indicate that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements
THE SURFACE FEATURES OF DROSOPHILA EMBRYONIC CELL LINES
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73303/1/j.1440-169X.1977.00345.x.pd
The impact of Stieltjes' work on continued fractions and orthogonal polynomials
Stieltjes' work on continued fractions and the orthogonal polynomials related
to continued fraction expansions is summarized and an attempt is made to
describe the influence of Stieltjes' ideas and work in research done after his
death, with an emphasis on the theory of orthogonal polynomials
Empiricism Without the Senses: How the Instrument Replaced the Eye
On receiving news of Galileo’s observations of the four satellites of Jupiter and the rugged face of the moon through his newly invented perspicillum, Kepler in great excitement exclaimed: Therefore let Galileo take his stand by Kepler’s side. Let the former observe the moon with his face turned skyward, while the latter studies the sun by looking down at a screen (lest the lens injure his eyes). Let each employ his own device, and from this partnership may there some day arise an absolutely perfect theory of the distances. This Hollywood-like scene of the two astronomers marching hand in hand toward the dawn of a new scientific era was no attempt by Kepler to appropriate Galileo’s success or to diminish the novelty of the telescope. On the contrary, Kepler repeatedly asserted how short sighted he was in misjudging the potential for astronomical observations inherent in lenses, and how radically Galileo’s instrument transformed the science of astronomy. It was a deep sense of recognition that beyond their different scientific temperaments and projects, they shared a common agenda of a new mode of empirical engagement with the phenomenal world: the instrument. For Kepler and Galileo, empirical investigation was no longer a direct engagement with nature, but an essentially mediated endeavor. The new instruments were not to assist the human senses, but to replace them
Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos
Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.
Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.
Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development
- …