883 research outputs found

    Water use of alternative wheatbelt crop species

    Get PDF
    84M5, 84M6, 84M7. Location: Merredin Research Station Merredin, Western Australia. Three experiments were conducted to measure the productivity and water use of alternative wheatbelt crop species on contrasting soil types in a dry mediterranean environment. Crop species investigated were wheat, barley, cereal rye, narrow leafed lupin and field pea. These were grown on three contrasting soil types, a red-brown earth, a sandy loam over clay and a deep loamy sand; all soils occurring within close proximity to each other. Detailed measurements were made of meteorological conditions, dry matter production, leaf area, root growth, soil water profiles, light interception and plant water status. This report gives the background and significance of the study, the methods employed and results obtained

    Multi-label classification using ensembles of pruned sets

    Get PDF
    This paper presents a Pruned Sets method (PS) for multi-label classification. It is centred on the concept of treating sets of labels as single labels. This allows the classification process to inherently take into account correlations between labels. By pruning these sets, PS focuses only on the most important correlations, which reduces complexity and improves accuracy. By combining pruned sets in an ensemble scheme (EPS), new label sets can be formed to adapt to irregular or complex data. The results from experimental evaluation on a variety of multi-label datasets show that [E]PS can achieve better performance and train much faster than other multi-label methods

    Engineering nucleotide specificity of succinyl-CoA synthetase in blastocystis: the emerging role of gatekeeper residues

    Get PDF
    Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design

    Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs

    A probabilistic analysis of argument cogency

    Get PDF
    This paper offers a probabilistic treatment of the conditions for argument cogency as endorsed in informal logic: acceptability, relevance, and sufficiency. Treating a natural language argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on which the RSA conditions depend, namely: change in the commitment to the reason, the reason’s sensitivity and selectivity to the claim, one’s prior commitment to the claim, and the contextually determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed serve to correct, the informal understanding and applications of the RSA criteria concerning their conceptual dependence, their function as update-thresholds, and their status as obligatory rather than permissive norms, but also show how these formal and informal normative approachs can in fact align

    The development and characterisation of porphyrin isothiocyanate–monoclonal antibody conjugates for photoimmunotherapy

    Get PDF
    A promising approach to increase the specificity of photosensitisers used in photodynamic therapy has been through conjugation to monoclonal antibodies (MAb) directed against tumour-associated antigens. Many of the conjugations performed to date have relied on the activated ester method, which can lead to impure conjugate preparations and antibody crosslinking. Here, we report the development of photosensitiser–MAb conjugates utilising two porphyrin isothiocyanates. The presence of a single reactive isothiocyanate allowed facile conjugation to MAb FSP 77 and 17.1A directed against internalising antigens, and MAb 35A7 that binds to a non-internalising antigen. The photosensitiser–MAb conjugates substituted with 1–3 mol of photosensitiser were characterised in vitro. No appreciable loss of immunoreactivity was observed and binding specificity was comparable to that of the unconjugated MAb. Substitution with photosensitiser had a minimal effect on antibody biodistribution in vivo for the majority of the conjugates, although a decreased serum half-life was observed using a cationic photosensitiser at the higher loading ratios. Tumour-to-normal tissue ratios as high as 33.5 were observed using MAb 35A7 conjugates. The internalising conjugate showed a higher level of phototoxicity as compared with the non-internalising reagent, using a cell line engineered to express both target antigens. These data demonstrate the applicability of the isothiocyanate group for the development of high-quality conjugates, and the use of internalising MAb to significantly increase the photodynamic efficiency of conjugates during photoimmunotherapy

    Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer.

    Get PDF
    Engineered nanomaterials that produce reactive oxygen species on exposure to X- and gamma-rays used in radiation therapy offer promise of novel cancer treatment strategies. Similar to photodynamic therapy but suitable for large and deep tumors, this new approach where nanomaterials acting as sensitizing agents are combined with clinical radiation can be effective at well-tolerated low radiation doses. Suitably engineered nanomaterials can enhance cancer radiotherapy by increasing the tumor selectivity and decreasing side effects. Additionally, the nanomaterial platform offers therapeutically valuable functionalities, including molecular targeting, drug/gene delivery, and adaptive responses to trigger drug release. The potential of such nanomaterials to be combined with radiotherapy is widely recognized. In order for further breakthroughs to be made, and to facilitate clinical translation, the applicable principles and fundamentals should be articulated. This review focuses on mechanisms underpinning rational nanomaterial design to enhance radiation therapy, the understanding of which will enable novel ways to optimize its therapeutic efficacy. A roadmap for designing nanomaterials with optimized anticancer performance is also shown and the potential clinical significance and future translation are discussed

    The global distribution of the Duffy blood group

    Get PDF
    Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite

    Possible Detection of Low Energy Solar Neutrons Using Boron Based Materials

    Get PDF
    Solar neutrons have been detected aboard the International Space Station (ISS), using lithium tetraborate and boron carbide detector elements. We find that evidence of a solar neutron flux, as detected in a neutron calorimeter following subtraction of the proton background, with an energy of about 2 to 4 MeV. This solar neutron flux is likely no more than 250 to 375 neutrons cm−2sec−1, with a lower bound of 50–75 neutrons cm−2sec−1 at one au
    corecore