51 research outputs found

    Tidally Driven Oscillations in KIC 4544587: a δ Scuti Binary System

    Get PDF
    Binary modelling techniques and frequency analysis have been applied to the Kepler photometric observations of KIC 4544587 to determine information about the orbital characteristics, individual components and tidal interactions. The system contains an early A-type δ Scuti variable, which pulsates in both pressure and gravity modes, and a late F- to early G-type star, which is possibly a solar-like oscillator. The Wilson-Devinney code was used to model the Quarter 3.2 data and PHOEBE was used to model the Quarter 7 data; the results of these two methods were then compared. Using PHOEBE the rate of apsidal advance was determined to be 0.0001179(1) rad d-1, which gives 145.9(1) yr for a complete precession. Subsequently the binary model light curve was subtracted from the original data and frequency analysis was performed on the residuals. Fifteen frequencies were identified that are harmonics of the orbital period, 9 of which are in the g mode regime and 6 in the p mode regime. It was concluded that these frequencies are not an artifact of the model fit and thus are a signature of tidal resonance. It was also determined that many of the frequencies in the p mode regime are separated from the two dominant p modes by a multiple of the orbital frequency; six of the identified modes demonstrate this separation to an accuracy of 3 σ. As they are not orbital harmonics, the origin of these frequencies remains unknown. Currently we know of no other star demonstrating these characteristics

    Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    Full text link
    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light time travel effect, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes photon-weighted mode, enhanced limb darkening treatment, better reflection treatment and Doppler boosting. Here we present the concepts on which PHOEBE is built on and proofs of concept that demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release of PHOEBE 2.0 on http://phoebe-project.or

    Validation of the frequency modulation technique applied to the pulsating δ Sct–γ Dor eclipsing binary star KIC 8569819

    Get PDF
    KIC 8569819 is an eclipsing binary star with an early F primary and G secondary in a 20.85-d eccentric orbit. The primary is a δ Sct–γ Dor star pulsating in both p modes and g modes. Using four years of Kepler Mission photometric data, we independently model the light curve using the traditional technique with the modelling code PHOEBE, and we study the orbital characteristics using the new frequency modulation technique. We show that both methods provide the equivalent orbital period, eccentricity and argument of periastron, thus illustrating and validating the FM technique. In the amplitude spectrum of the p-mode pulsations, we also discovered an FM signal compatible with a third body in the system, a low-mass M dwarf in an 861-d orbit around the primary pair. However, the eclipses show no timing variations, indicating that the FM signal is a consequence of the intrinsic change in pulsation frequency, thus providing a cautionary tale. Our analysis shows the potential of the FM technique using Kepler data, and we discuss the prospects to detect planets and brown dwarfs in Kepler data for A and F stars even in the absence of transits and with no spectroscopic radial velocity curves. This opens the possibility of finding planets orbiting hotter stars that cannot be found by traditional techniques

    Rubin Observatory LSST Transients and Variable Stars Roadmap

    Get PDF
    The Vera C. Rubin Legacy Survey of Space and Time holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey\u27s first light

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    RADIAL VELOCITY MONITORING OFKEPLERHEARTBEAT STARS

    Get PDF
    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories

    Validating Chemistry Faculty Members’ Self-Reported Familiarity with Assessment Terminology

    Get PDF
    With the increasing emphasis placed upon chemistry instructors and departments to assess and evaluate their courses and curricula, understanding the structure of chemistry faculty members’ knowledge and use of assessment terms and concepts can shed light on potential areas for targeted professional development. Survey research that might accomplish this objective often relies on self-reported responses from the target audience, and such information is sometimes difficult to assess in terms of validity. As an example of an internal mechanism to help establish validity, it is possible to include an “internal standard” item early in the survey. For the sake of understanding faculty members’ familiarity with assessment terminology, an item that asked participants to identify analogous pairs of terms comparing assessment measures (assessment validity and assessment reliability) to laboratory measures (accuracy and precision) served this purpose. Using ordered logistic regression, participants who answered the analogy question completely correctly were more likely to report higher levels of familiarity with the assessment terms. Because the self-reported data appears to be valid, these data can be further used in subsequent analyses in order to determine the general familiarity trends among chemistry faculty regarding assessment terminology

    Pneumonic Tularemia in Rabbits Resembles the Human Disease as Illustrated by Radiographic and Hematological Changes after Infection

    Get PDF
    Background: Pneumonic tularemia is caused by inhalation of the gram negative bacterium, Francisella tularensis. Because of concerns that tularemia could be used as a bioterrorism agent, vaccines and therapeutics are urgently needed. Animal models of pneumonic tularemia with a pathophysiology similar to the human disease are needed to evaluate the efficacy of these potential medical countermeasures. Principal Findings: Rabbits exposed to aerosols containing Francisella tularensis strain SCHU S4 developed a rapidly progressive fatal pneumonic disease. Clinical signs became evident on the third day after exposure with development of a fever (>40.5°C) and a sharp decline in both food and water intake. Blood samples collected on day 4 found lymphopenia and a decrease in platelet counts coupled with elevations in erythrocyte sedimentation rate, alanine aminotransferase, cholesterol, granulocytes and monocytes. Radiographs demonstrated the development of pneumonia and abnormalities of intestinal gas consistent with ileus. On average, rabbits were moribund 5.1 days after exposure; no rabbits survived exposure at any dose (190-54,000 cfu). Gross evaluation of tissues taken at necropsy showed evidence of pathology in the lungs, spleen, liver, kidney and intestines. Bacterial counts confirmed bacterial dissemination from the lungs to the liver and spleen. Conclusions/Significance: The pathophysiology of pneumonic tularemia in rabbits resembles what has been reported for humans. Rabbits therefore are a relevant model of the human disease caused by type A strains of F. tularensis. © 2011 Reed et al
    corecore