34 research outputs found

    The GABBR1 locus and the G1465A variant is not associated with temporal lobe epilepsy preceded by febrile seizures

    Get PDF
    BACKGROUND: Polymorphism G1465A in the GABBR1 gene has been suggested as a risk factor for non-lesional temporal lobe epilepsy (TLE); however, this genetic association study has not been independently replicated. We attempted to replicate this study in our cohort of patients with TLE. Furthermore, we also analyzed the coding sequence of this gene and searched for disease-causing mutations. METHODS: We included 120 unrelated individuals with TLE that was preceded by febrile seizures (FS) who did not have any evidence of structural lesions suggesting secondary epilepsy. 66 individuals had positive family history of TLE epilepsy and 54 were sporadic. Each patient was genotyped for the presence of G1465A polymorphism. All exons of the GABBR1 gene were screened by single strand confirmation polymorphism method. Genotypes were compared with two independent matched control groups. RESULTS: We detected two A alleles of the G1465A polymorphism in one homozygous control subject (0.87% of all alleles) and one A allele in a patient with TLE (0.45%, not significant). Other detected polymorphisms in coding regions had similar frequencies in epilepsy patients and control groups. No disease causing mutations in the GABBR1 gene were detected in patients with sporadic or familial TLE. CONCLUSION: Our results indicate that TLE preceded by FS is not associated with the polymorphisms or mutations in the GABBR1 gene, including the G1465A polymorphism. The proportion of TLE patients with FS in the original study, reporting this positive association, did not differ between allele A negative and positive cases. Thus, our failure to reproduce this result is likely applicable to all non-lesional TLE epilepsies

    Febrile seizures: mechanisms and relationship to epilepsy.

    Get PDF
    Studies of febrile seizures have been driven by two major enigmas: first, how these most common of human seizures are generated by fever has not been known. Second, epidemiological studies have linked prolonged febrile seizures with the development of temporal lobe epilepsy, yet whether long or recurrent febrile seizures cause temporal lobe epilepsy has remained unresolved. To investigate these questions, a model of prolonged (complex) febrile seizures was developed in immature rats and mice, permitting mechanistic examination of the potential causal relationships of fever and seizures, and of febrile seizures and limbic epilepsy. Although the model relied on hyperthermia, it was discovered that the hyperthermia-induced secretion of endogenous fever mediators including interleukin-1beta, which contributed to the generation of these 'febrile' seizures. In addition, prolonged experimental febrile seizures provoked epilepsy in a third of the animals. Investigations of the mechanisms of this epileptogenesis demonstrated that expression of specific ion (HCN) channels and of endocannabinoid signaling, may be involved. These may provide novel drug targets for intervention in the epileptogenic process

    Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities.

    Get PDF
    Epidemiological and recent prospective analyses of long febrile seizures (FS) and febrile status epilepticus (FSE) support the idea that in some children, such seizures can provoke temporal lobe epilepsy (TLE). Because of the high prevalence of these seizures, if epilepsy was to arise as their direct consequence, this would constitute a significant clinical problem. Here we discuss these issues, and describe the use of animal models of prolonged FS and of FSE to address the following questions: Are long FS epileptogenic? What governs this epileptogenesis? What are the mechanisms? Are there any predictive biomarkers of the epileptogenic process, and can these be utilized, together with information about the mechanisms of epileptogenesis, for eventual prevention of the TLE that results from long FS and FSE

    Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.

    Get PDF
    Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20-->60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed

    Tetanus toxoid

    No full text
    corecore