342 research outputs found

    Pinning of magnetic domain walls in multiferroics

    Full text link
    The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.Comment: 4 pages, 2 figure

    Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis

    Get PDF
    OBJECTIVES: Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA). METHODS: OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O. RESULTS: Salubrinal suppressed the progression of OA by downregulating p-NFκB p65 and MMP13. Although Guanabenz elevates the phosphorylation level of eIF2α, it did not suppress the progression of OA. CONCLUSIONS: Administration of Salubrinal has chondroprotective effects in arthritic joints. Salubrinal can be considered as a potential therapeutic agent for alleviating symptoms of OA. Cite this article: Bone Joint Res 2015;4:84-92

    Overconfidence is universal? Elicitation of genuine overconfidence (EGO) procedure reveals systematic differences across domain, task knowledge, and incentives in four populations

    Get PDF
    Overconfidence is sometimes assumed to be a human universal, but there remains a dearth of data systematically measuring overconfidence across populations and contexts. Moreover, cross-cultural experiments often fail to distinguish between placement and precision and worse still, often compare population-mean placement estimates rather than individual performance subtracted from placement. Here we introduce a procedure for concurrently capturing both placement and precision at an individual level based on individual performance: The Elicitation of Genuine Overconfidence (EGO) procedure. We conducted experiments using the EGO procedure, manipulating domain, task knowledge, and incentives across four populations—Japanese, Hong Kong Chinese, Euro Canadians, and East Asian Canadians. We find that previous measures of population-level overconfidence may have been misleading; rather than universal, overconfidence is highly context dependent. Our results reveal cross-cultural differences in sensitivity to incentives and differences in overconfidence strategies, with underconfidence, accuracy, and overconfidence. Comparing sexes, we find inconsistent results for overplacement, but that males are consistently more confident in their placement. These findings have implications for our understanding of the adaptive value of overconfidence and its role in explaining population-level and individual-level differences in economic and psychological behavior

    Is there a rational basis for cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence

    Get PDF
    Background: Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment. Methods: Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria. Results: In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain. Conclusions: The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur
    corecore