664 research outputs found

    Fermi-surface mapping from Compton profiles: Application to beryllium

    Full text link
    The two-dimensional momentum density of Be on the basal GMK plane, i.e. the line integral of the three-dimensional momentum density along the c-axis, is reconstructed via the Cormack method from both experimental and theoretical Compton profiles. It is shown that in the case of Be, despite the momentum density is highly anisotropic, merely two Compton profiles are sufficient to reproduce the main features of the momentum density. The analysis of the reconstructed densities is performed both in the extended and reduced zone schemes

    The Origin And Loss Of Periodic Patterning In The Turtle Shell

    Get PDF
    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell

    DROP JUMPS OR HURDLE JUMPING FOR VOLLEYBALL TRAlNlNG ?

    Get PDF
    Drop jumps and hurdle jumping are drills widely used in volleyball training. Selection of dropping height or hurdle jumping technique has often been based on traditions rather than detailed biomechanical analysis. This study was designed to compare volleyball spiking and blocking with the jumping drills mentioned above in relation to various kinematic and kinetic parameters and myoelectrical activity (EMG). Ten volleyball players ranging in age from 20 to 26 years with an average volleyball playing and training background of eight years volunteered as subjects. After warming up the subjects performed with maximal effort a total of 60 spikes, blocks and various jumping drills with a 30 s interval between each separate activity. The spikes were step-close and hop spikes, and the blocks were performed with and without side steps. The drop jumps (DJ) were performed from heights of 0.25 m, 0.45 m, 0.55 m and 0.85 m. The hurdles (height 1.0 m) were arranged so that the jrmpng was performed both with bilateral foot contacts with no steps between the hurdles and with one step between the hurdles. All takeoffs and landings were performed on force platforms so that three-dimensional ground reaction forces as well as contact and flight times could be measured for each jump. An electrical goniometer was used to detect knee angle data and EMG activity was registered from the knee, hip and ankle extensor and knee flexor musculature using surface electrodes. The block jumps showed the longest total contact times (337 -. 589 ms), followed by the spikes and hurdle jumping (254 - 329 ms) and the drop jumps (212 - 225 ms). Average eccentric ground reaction forces increased with dropping height (from 3177 to 4194 N) and were higher than for the hurdle jumping (21 15 - 3108 N), spike (2364 - 3005 N) or block jumps (1243 - 2219 N). During the eccentric phase of contact average knee angular velocity varied between 2.8 rad/s (block) and 5.3 rad/s (DJ05) and during the concentric phase of contact between 6.5 rad/s (block) and 9.1 rad/s (~145). Eccentric EMG activity in the drop jumps and hurdle jumping remained at the same level as in the spike jumps, while during the concentric phase, EMG activity in the hurdle jumping did not reach the levels measured during the spike, block and drop jumps. It is concluded that the utilisation of dropping above 0.45 m leads to high eccentric forces, which compared to hurdle jumping or to jumps performed from lower drop heights appear to yield no additional benefit in volleyball training and may actually have injurious effects on players

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact

    New directions for lifelong learning using network technologies

    Get PDF
    Please refer only to original source: Koper, R., Tattersall, C. (2004). New directions for lifelong learning using network technologies. British Journal of Educational Technology, 35 (6), 689-700.The requirements placed on learning technologies to support lifelong learning differ considerably from those placed on technologies to support particular fragments of a learning lifetime. The time scales involved in lifelong learning, together with its multi-institutional and episodic nature are not reflected in today’s mainstream learning technologies and their associated architectures. The article presents an integrated model and architecture to serve as the basis for the realization of networked learning technologies serving the specific needs and characteristics of lifelong learners. The integrative model is called a “Learning Network” (LN) and its requirements and architecture are explored, together with the ways in which its application can help in reducing barriers to lifelong learning

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    Visualizing multi-dimensional pareto-optimal fronts with a 3D virtual reality system

    Get PDF
    In multiobjective optimization, there are several targets that are in conflict, and thus they all cannot reach their optimum simultaneously. Hence, the solutions of the problem form a set of compromised trade-off solutions (a Pareto-optimal front or Pareto-optimal solutions) from which the best solution for the particular problem can be chosen. However, finding that best compromise solution is not an easy task for the human mind. Pareto-optimal fronts are often visualized for this purpose because in this way a comparison between solutions according to their location on the Pareto-optimal front becomes somewhat easier. Visualizing a Pareto-optimal front is straightforward when there are only two targets (or objective functions), but visualizing a front for more than two objective functions becomes a difficult task. In this paper, we introduce a new and innovative method of using three-dimensional virtual reality (VR) facilities to present multi-dimensional Pareto-optimal fronts. Rotation, zooming and other navigation possibilities of VR facilities make easy to compare different trade-off solutions, and fewer solutions need to be explored in order to understand the interrelationships among conflicting objective functions. In addition, it can be used to highlight and characterize interesting features of specific Pareto-optimal solutions, such as whether a particular solution is close to a constraint boundary or whether a solution lies on a relatively steep trade-off region. Based on these additional visual aids for analyzing trade-off solutions, a preferred compromise solution may be easier to choose than by other means
    corecore