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Abstract—In multiobjective optimization, there are several
targets that are in conflict, and thus they all cannot reach tleir
optimum simultaneously. Hence, the solutions of the probla
form a set of compromised trade-off solutions (a Pareto-opinal
front or Pareto-optimal solutions) from which the best solution
for the particular problem can be chosen. However, finding ttat
best compromise solution is not an easy task for the human
mind. Pareto-optimal fronts are often visualized for this purpose
because in this way a comparison between solutions accordjn
to their location on the Pareto-optimal front becomes somehat
easier. Visualizing a Pareto-optimal front is straightforward when
there are only two targets (or objective functions), but visializing
a front for more than two objective functions becomes a diffialt
task. In this paper, we introduce a new and innovative methodf
using three-dimensional virtual reality (VR) facilities to present
multi-dimensional Pareto-optimal fronts. Rotation, zooring and
other navigation possibilities of VR facilities make easy @
compare different trade-off solutions, and fewer solutiors need to
be explored in order to understand the interrelationships anong
conflicting objective functions. In addition, it can be usedto
highlight and characterize interesting features of specifi Pareto-
optimal solutions, such as whether a particular solution isclose
to a constraint boundary or whether a solution lies on a relaively
steep trade-off region. Based on these additional visual d& for
analyzing trade-off solutions, a preferred compromise saltion
may be easier to choose than by other means.

I. INTRODUCTION

N MANY real-world problems, decision making with mul-
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choosing a particular optimal compromise solution is not a
trivial task. Furthermore, the objectives in a multiobjeet
optimization task do not need to be commensurable. In such
a case, the multiobjective decision making task gets more
difficult, especially when the number of objectives is large
than two. This is why there is a need for developing new
methodologies for supporting the decision making process.

A Pareto-optimal front, from where an individual final
solution can be chosen (e.g. by a decision maker [2]) is
often studied with different visualization tools. In thisay
the decision maker can extract useful information from the
results and thus, a comparison between solutions getsr.easie
A Pareto-optimal front is quite simple to visualize whenrthe
are only two objective functions. However, visualizing fwit
more than two objectives has so far been problematic, and few
attempts have been made to visualize a higher dimensional
Pareto-optimal front [3], [4], [5]. Virtual reality (VR) isa
visualization environment that offers facilities to preshigh-
dimensional spaces and it has also been applied for Pareto-
optimal fronts, see [6], [7], [8]. In this paper, we suggdst t
use of the VR environment not only to visualize a higher
dimensional Pareto-optimal front, but also to analyze and
understand the nature and relative location of solutiomsdier
to help choosing the best solution for the particular proble

Basically, the VR is a computer created environment which

tiple conflicting objectives in every day operation can bean be used for visualizing three-dimensional (3D) objects
demanding. Moreover, an unfavorable decision can be fingsee, e.g. [9], [10]). Hence it makes possible to visualizé a

cially expensive or even hazardous in some situations.erheompare solutions which are on a 3D Pareto-optimal front.
exist different ways to support a decision making proceks [Thus, a visualized 3D Pareto-optimal front can be examined
and some of them are based on multiobjective optimization. many ways: it can be zoomed and rotated, and it also
Multiobjective optimization methods are capable of hamglli allows the decision maker to dive into the front to get a
multiple conflicting objectives at the same time. Solutiafis feel of the nature of the solutions. Moreover, VR enables the
the multiobjective optimization problem form a Paretoiopatl user to interact with the visualized Pareto-optimal solui
front, i.e. a set of compromised trade-off solutions. HowFhis makes easier to compare neighboring solutions and
ever, even when different Pareto-optimal solutions aredou allows the decision maker to learn about the problem and
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the interrelationships among objectives. Based on these ¥R Virtual Reality Environment
facilities the decision maker can identify a particularusion Virtual reality is a medium which makes it possible to
which is an adequate compromise. visualize and experience objects from an animated world
In this paper, there are two case studies utilizing 3D VRaying visual, sound and haptic experiences realized ¢ffrou
facilities presented. First, we use an evolutionary comn  jmmersion, interaction, and collaboration of the VR eletsen
-based multiobjective optimization scheme for generamgAccording to [10] four key elements create the VR envi-
large number of Pareto-optimal solutions. In addition, a®nment: a virtual world, immersion, sensory feedback, and
interactive visualization scheme in the VR is used to de®iphinteractivity. The virtual worldis a content of given medium
some interesting features of the solutions obtained bygusifhcluding a collection of objects, and their relationshared
existing methodologies such as the conceptinofovization ryles in the spacémmersioninto an alternative reality means
[11]. Second, there is an industrial example having foossibility to perceive something besides the world in Wwhic
conflicting objectives presented. Although we show a fegne s living currently. Immersion is sometimes dividedoint
capabilities of a VR system here for decision making purposghysical and mental immersions, but often they both exist in
certainly many other innovative methodologies are possiby VR systemThe sensory feedbadk the third key element.
and this paper should encourage execution of further studigis pased on user’s physical position, and the aim is that th

in the coming years. objects and the whole space alter depending on the user’s po-
sition. The last element imteractivity which means real-time
Il. MULTIOBJECTIVE OPTIMIZATION AND VIRTUAL response to the user's actions. There are many applications
REALITY that can utilize virtual reality technology: visualizingientific
A multiobjective optimization problem is often defined ageSults, interior design in architecture, and prototy/stirg in
follows: industry [13], [14], for example.
In the VR laboratory objectives can be examined in their
minimize{ f1(z), ..., fu(z)} (1) real size or small objectives can be enlarged, which makes
subject tox € S, VR usable in several applications. VR can be also build

. o ) _in PC environment with feasible equipment, software, &ctiv
wherez is a vector of decision variables from the feasiblgereg glasses etc. Then navigation is not comprehensive as

set 5 C R" defined by linear, nonlinear and box cony, |aporatory, but the user is still able to interact with VR
straints. An objective vector can be denoted pg) = similarly to laboratory environment.

(fi(x), f2(z), ..., fr(xz))T. Here we minimize, but if an ob- _ N _ S o
jective function f; is to be maximized, it is equivalent toB. 3D Virtual Reality Utilized in Multiobjective Optimizah
consider minimization of- f;. The VR system can be used in visualizing Pareto-optimal

Optimality in multiobjective optimization is understood i solutions, and thereby supporting the decision making in a
the sense of Pareto-optimality or non-dominated solutionsultiobjective optimization process. The flexibility assied
[12]. The Pareto-optimality is defined as follows:decision with a 3D VR system makes it an alternative way of visualiz-
vectorz’ € S is Pareto-optimal if there does not exist anotheing the Pareto-optimal front and suing visual informatiomhe
decision vectorz € S such thatf;(z) < fi(z’) for all decision making process. In addition, analyzing the sohsi
i =1,...,k and f;(z) < f;(z’) for at least one indexy. in order to understand the interactions of objective fuordi
These Pareto-optimal solutions form a Pareto-optimal set and decision variables comes easier. In Fig. 1 the useizauil
a Pareto-optimal front. There are two concepts often used\iR environment in order to examine an approximated Pareto-
multiobjective optimization: an ideal objective vectdrc R* optimal front. The front is controlled (zoomed, rotated and
and a nadir objective vectot™*? ¢ RF that give lower scaled) by the user using a wand (also called a 3D-mouse). In
and upper bounds, respectively, for the objective funstion the VR, the users can study the relationships between objec-
the Pareto-optimal front (see [2] for details). All the Rare tive functions and then get ideas what kind of compromises
optimal solutions are equally good compromises from a mathetween the multiple objectives can be made. This procdks wi
ematical point of view, and there exists no trivial mathenst then aid in selecting the final compromised solution. When
tool to find the best solution in the Pareto-optimal frontomplexity of the data increases, valuable informationhef t
Typically a decision maker, who is an expert in the field frorRareto-fronts and problem’s behaviour can be extracted fro
where the problem has arisen, is needed in order to find tip@phical presentation efficiently. One should note thatéal
best or the most satisfying solution. The decision maker canmersion and 3D objects can be experienced only in a virtual
participate in the process of finding the solution in theat#ht reality laboratory, not in the figures presented in this pape
ways and also the different phases of solving process byintegration of multiobjective optimization and VR reqisre
determining which of the Pareto-optimal solutions is thesmoa computerized algorithm for calculating Pareto-optintdlis
satisfying to be the final solution. However, decision mgkintions and a hardware system for a VR environment coupled
is sometimes tricky, because comparing the numerical salugith a software for visualization in stereo [10]. The VR envi
of the solutions is difficult. Thus, some additional infotima ronment used in this research has been built at the Uniyersit
and aids are needed to support decision making process. of Kuopio in Finland, and it is based on OpenDX visualization
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Fig. 1. Analyzing a Pareto-optimal front with the 3D VR systeA 3D Pareto-optimal front visualized in the VR system iegamted in a two-dimensional
figure here, because the real immersion on a front can beierped only in a laboratory.

software. Graphics Computer SGI Prism with 8 CPUs (a 64entained two steps, and in the first step a genetic algorithm
bit, 1.5 GHz, Intel Itanium 2, 24 GB memory, 48 Gflops) iwith a scalarizing function [2] was used. Then neighboring
used with SuSe Linux Enterprise Server 9.3 as an operatismgutions were connected with a hyper-plane in visualirgti
system. 3D-effects are generated through wireless sequitlli and any point in the hyper-plane could be chosen as a referenc
crystal shutter eye wear (active stereo glasses). Steassag point. Thus, in the second step the corresponding Pareto-
shut alternately left and right eye view with frequency abowptimal solution could be obtained by solving an achievemen
45 pictures per eye per second. Visualized 3D-objects (s tlscalarizing function [2], [5], [15].

paper Pareto-optimal fronts) are controlled through thadva ] o .

Polhemus equipment is used to follow the wand’s movemerfts A Test Problem with Highlighted Solutions

to control the objects in the VR environment. First, we considered a multiobjective optimization tesitpr
lem (DTLZ6) [16]. In the general form of this problem,
there arek objective functions with a complete decision

In this section, we present two examples illustrating thgyriaple vector partitioned it non-overlapping groups =
new visualizing aspects which a VR facility can offer. In the,, -'L'k)T- We solved a three-objective version of the

first_ example, a standard thrge—objective test.probIemnltg;<'=1vi|0rob|em that is written as follows [16]:

a disconnected set of non-linear Pareto-optimal fronts was o

solved by evolutionary multiobjective optimization (EMO) minimize  {f1(z), f2(x), f3(x)} @)
EMO procedures are generic population-based meta-hieurist subjectto 0 <z; <1fori=1,...,22

optimization algorithms [12]..They use natural evqutigna where the objective functions were defined fage) = 1,
prmc!ples, such as reprqductlon, mutation and.recomlmn.at Fa(@s) = 2 and fa(@) = (1 + g(@3))h(f1, f2,9). The func-
iteratively to attempt to find a set of Pareto-optimal salns. ionals wereg(zs) — 1+ 23 2y and h(f1, fa,q) =
EMO methodologies are capable of finding a large set of tradt S 3 |@s] Swi€my L2
off solutions as presented in the first example. 3= [Jﬁg (1+sin(37 f;)) |- The functionaly(z3) required

In the second example, we consider a real-world papérs| = 20 variables andh was the total number of variables,
making optimization problem with four objective functioms here n = 22. In this test problem, there wer2? = 4
which the advantages of decision making aspects with the \disconnected Pareto-optimal regions.
system are presented. This example was solved by a classicdlhne NSGA-II procedure [12] was used as an EMO al-
multiple criteria decision making method. The solutiongess gorithm in this study and it was run with 1,000 population

I1l. VISUALIZATION EXAMPLES
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Fig. 2. Disconnected set of nonlinear Pareto-optimal regitforming the Pareto-optimal front) in evolutionary cartgiion example (DTLZ6) in a VR
environment. Solutions having.2 < f3 < 4.4 are colored red.

members. The final solutions were visualized with the prd@o illustrate, we return to the DTLZ6 test problem and
posed VR system and they are shown also in Fig. 2. Withvestigate the existence of Pareto-optimal solutionisfyatg
the 3D visualization capabilities, the nonlinear featufehe the following relationships:

disconnected Pareto-optimal regions was much easier to see &, (f,z): 21 =0 (Red)
compared to the earlier studies [16]. In this example, the <I>1(f,a:) : $1 —0 (Blue)
decision maker was first interested in seeing all the saistio @z(f’z) ) zi 1 (Brow,n)
in which 4.2 < f3 < 4.4 as presented in Fig. 2. As one can ®,(f,z): 20 =1 (Purple)

see in the figure, this constraint made possible quite differ - . _ _
compromises between the other two objectives: highligated The above conditions check if any Pareto-optimal solution
lution were located into three separate Pareto-optimabnsg Made box constraints on variables and actlve.6ln Fig.
Thus, understanding the trade-offs between differentetarg3. there are marked all such solutions with= 107°. It is

was more clear. Moreover, because of zooming, rotating, aéeresting to note that there were no solutions on the Baret
immersion possibilities, the Pareto-optimal front wasyets OPtimal front close to the upper bound of these two variables
comprehend. Also, the trade-offs between targets were ea@é there were a number of solutions which were close to their

to understand, and hopping from one Pareto-optimal regionlewer bounds. Only a few solutions made close to zero,
another got simplified. but there exist a number of solutions which madeclose to

zero. Furthermore, all these solutions seemed to lie on only
In the concept ofnnovization[11], the task of evolutionary one of the four Pareto-optimal regions. It could be useful to
multiobjective optimization is followed by a search of héad jgentify solutions close to constraint boundaries and ¢hérr
interactions among decision variables and objective fanst jnyestigation and relaxation of active constraints coelat to
within obtained solutions. This concept has revealed intejetter solutions. Such information was not only interesbnt
esting and important insights about design and optiminatigoy|d be useful if problem-specific relationships wereeést
problems. Here, we argue that the proposed VR based visualas seen from this example, the VR environment can be used
ization tool can be used as an aid to assist initimevization s 3 3D visualization tool for Pareto-optimal solutionsaited
task. Combining these two concepts allows the decision makgth an EMO procedure. These solutions can be studied with
to test the validity of different interrelationships amotite 5 VR tool not only to make a better visualization of the front,
decision variables and objective functions. For example, tpyt also to gather more useful information and properties of
existence of a given relationship, such &&f,z) = 0, can pareto-optimal solutions. Next, we present a more complex

be tested by marking all solutions (among the obtained EM@a|-world industrial decision making problem.
solutions) which restrict the absolute value &f within a

threshold, say = 10~¢, in red. The location and trace of thesd- Industrial Example: Papermaking Optimization

solutions on the Pareto-optimal front will provide a pletho In papermaking, the aim is to produce paper as much as
of information to the decision maker about the importance pbssible with as low costs as possible [17], [18], [19]. In
the above relationship before choosing a particular swiuti addition, there are several quality properties which sthoul
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Fig. 3. Pareto-optimal solutions close to the constraintnig@aries are highlighted with red and blue colors using tReeévivironment for the DTLZ6 test
problem.

obtain acceptable values at the same time. These targets fgrevere paper formation and basis weight, which were given
often conflicting, and thus the optimization problems beeonthe desired values 0.36'm? and 50.5/m?2, respectively. The
naturally multiobjective. In this example a papermaking ogdourth objective functionf, was evaporated water which was
timization problem is studied. Because of the long comptp be maximized. A vectog € S contained all the decision
tational time, the decision maker wanted to compute as fexriables that were typical controls of paper machine aed th
solutions as possible. The Pareto-optimal solutions cdetpufeasible setS was formed of their box constraints. Mappings
were visualized as 3D points in the VR, and an approximatiofy for all i = 1,...,27 denoted unit-process models consti-
of a Pareto-optimal front was formed with these few solutiontuting a simulation model for the entire papermaking preces
In this example, there were four papermaking objectivesdg;, i = 1,...,27 were the simulation model outputs [18].

and eight decision variables. The problem was formed as ar, Lo .
L o t t t d tw te s .
model-based optimization problem [18], where the Obj(E!CtI\{h © oplimization process conaine 0 separate steps
i
C

functi | d b luated based th luti E first step a set of the trade-off solutions were calculated
unction vaiues could be evaluated based on the solution gy, genetic algorithm with scalarization by achievement
equations describing the system, i.e. a simulation model o

) N : alarizing function. Then, an approximation of the Pareto
paper machine. Thus, the optimization problem was written 8ptimal front was generated in the VR environment using

follows: these solutions. The left plot in Fig. 4 shows the solutions
optimize {f1(z,q1, -, q27),-- -, fa(,q1, - .- q27)} and the approximated front obtained after the first step. The
Ai(z,q,) =0 values of the obje_ctive functiong, fo and_fg are _presented
As(2,q,,5) = 0 on the axes andl is p_resented by colour in the flggre. Herg,
subject to _ Y (3) the proposed VR environment was found to be quite effective
: tool to explore the multidimensional Pareto-optimal solos
Asr(T,q1, .- qy7) =0 and the approximated front between them. The decision maker

observed that there was a conflict between the first two
objective functions, i.e. a good tensile strength ratioseau
where f; presented paper tensile strength ratio and it waslarge formation value which was not desired and vice versa.
given the desired value 3.4. The objective functighsand Thus, there exists a trade-off. Another observation wasaha

x eSS,



912 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 4. On the left, solutions after the first step, and on tgbtry all solutions after the first and the second steps. Hjective functions fromf; to f3 are
presented as a 3D surface afidis presented as a variation in color.

large value of the fourth objective function came with a &argally demanding real-world optimization problems and reduc
value of the third objective function, thereby producingcal the number of uninteresting solutions needed be calculated

a conflict between these two objective functions: the ddsiraddition, better visualization technique allows one torgete
value of f3 could not be achieved at the same time with a goddformation about the relationships between the solutams
value of f;. However, there were good compromise solutiorabjective functions than a simple plot of the numerical data
between the objective functions on middle and front part &fe believe that the VR tool will help the decision maker
the approximated set. Based on these observations, thenregd understand and analyze the Pareto-optimal front, ansl thu
highlighted by an ellipse (shown in the figure) was chosen antbke it easier to choose a single preferred solution.

the optimization process was re-directed towards thisoregi

in the second step. This preference information was oldaine IV. DISCUSSIONS ANDCONCLUSIONS

with the help of visualization through the VR tool, where the

decision maker could examine the existing solutions in man¥ion visualized because in this way a comparison between

ways by rotating and zooming the Pareto-optimal set. solutions becomes easier. A Pareto-optimal front is easy to
In the second stepthree new solutions were calculatedjisyalize when there are only two objective functions, but
with help of the reference point method and the gradienfisualizing more than two objective functions is probleimat
based optimizer. The decision maker’s preferences, the Gj this paper, we have integrated multiobjective optimitzat
cled region in Fig. 4, was utilized in defining the referencgith the 3D VR tool to study the Pareto-optimal solutions and
points. Unfortunately, only one of the three new solutiongpproximated Pareto-optimal fronts to help to make a better
generated was located into the preferred region and otlicision when choosing the final solution. The 3D VR tool
two were located in such a part of the solution space, whetfakes easier to compare solutions, navigate from one soluti
there were no solutions after the first step. The plot ag the other by zooming and rotating the front. Thus, it aiow
the right side in Fig. 4 shows all the solutions, that i§ petter comprehension of solutions with desired propertie
the solutions produced in the first step complemented Byrough highlighting. In addition, using sophisticategual-
three solutions produced in the second step. Two of the ngMition tools means that fewer solutions need to be computed
solutions were interesting from the papermaking point @ order to learn and understand the interrelationshipsef t
view: one located inside the preferred region (circled ig. Fi conflicting objectives. This is important especially if @prem
4) and another one located on the right side having valugs computationally expensive (e.g. in real-world induaitri
(f = (3.78,0.39,50.19,9.59)T), which presented also a goodcases).
compromise between the objective functions. However, the|n this paper, different kinds of 3D visualizations with the
first-mentioned solution (inside the circled part) had oy /R environment have been discussed and demonstrated. First
function values:f = (3.79,0.41,51.02,9.68)" and it was 5 |arge number of solutions forming a dense set of Pareto-
the most satisfying compromise solution to be the final oRgtimal solutions obtained by EMO was visualized. In this se
according to the decision maker's knowledge. some interesting features of the solutions were highligyated
The ability to visualize trade-off information among objecstudied. In the second problem, a few Pareto-optimal swisti
tive functions through the 3D VR system makes it possiblgere calculated with different optimization techniquesdan
to focus on interesting part of the solution space. This wilhey were visualized using the proposed VR environment.
certainly enhance the decision making ability in compotati The information gathered from this exercise helped to find

In multiobjective decision making, Pareto-optimal froate
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an interesting Pareto-optimal region for the decision make

(7]

concentrate. Such a technique will be valuable for handling

large number of objective functions.
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J. Valdés and A. Barton, “Visualizing high dimensiomdijective spaces
for multi-objective optimization: A virtual reality appagh,” in Proceed-

ings of the IEEE Congress on Evolutionary Computati&mngapore,

2007.

This paper, so far, has shown a number of advantaggg J. valdés, A. Barton, and R. Orchard, “Virtual realitigh dimensional
of using a VR environment in making a better realization

of the Pareto-optimal front in a multiobjective optimizati

objective spaces for multi-objective optimization: An iraped repre-
sentation,” inProceedings of IEEE World Congress on Evolutionary
Computation Singapore, 2007.

task. In addition, we have emphasized capabilities of VR thg9] J. Eddy and K. E. Lewis, “Visualization of multidimensial design
helps decision making in real-world applications, which we
see as one of the potential application of the VR systems.
These initial results are promising and open up a number of

challenging research issues, such as handling a large munibd

of objective functions, simultaneous visualization ofexjve

[11]

and solution spaces, faster an optimization software anRa V
hardware interactions, etc. The purpose of this paper is to
discuss the power and usefulness of the VR environment;ip,

multiobjective optimization, and to bring out the techrecas

a new and promising mean of visualizing and understandifg!

complex interactions among objectives and solutions.
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