171 research outputs found

    Electrically addressable vesicles: Tools for dielectrophoresis metrology

    Get PDF
    Dielectrophoresis (DEP) has emerged as an important tool for the manipulation of bioparticles ranging from the submicron to the tens of microns in size. Here we show the use of phospholipid vesicle electroformation techniques to develop a new class of test particles with specifically engineered electrical propserties to enable identifiable dielectrophoretic responses in microfabricated systems. These electrically addressable vesicles (EAVs) enable the creation of electrically distinct populations of test particles for DEP. EAVs offer control of both their inner aqueous core and outer membrane properties; by encapsulating solutions of different electrolyte strength inside the vesicle and by incorporating functionalized phospholipids containing poly(ethylene glycol) (PEG) brushes attached to their hydrophilic headgroup in the vesicle membrane, we demonstrate control of the vesicles’ electrical polarizabilities. This combined with the ability to encode information about the properties of the vesicle in its fluorescence signature forms the first steps toward the development of EAV populations as metrology tools for any DEP-based microsystem.National Institutes of Health (U.S.) (Grant RR199652)National Institutes of Health (U.S.) (Grant EB005753)Merck/CSBi (Fellowship)Solomon Buchsbaum AT&T Research Fun

    Characterization of BTBD1 and BTBD2, two similar BTB-domain-containing Kelch-like proteins that interact with Topoisomerase I

    Get PDF
    BACKGROUND: Two-hybrid screening for proteins that interact with the core domain of human topoisomerase I identified two novel proteins, BTBD1 and BTBD2, which share 80% amino acid identities. RESULTS: The interactions were confirmed by co-precipitation assays demonstrating the physical interaction of BTBD1 and BTBD2 with 100 kDa topoisomerase I from HeLa cells. Deletion mapping using two-hybrid and GST-pulldown assays demonstrated that less than the C-terminal half of BTBD1 is sufficient for binding topoisomerase I. The topoisomerase I sequences sufficient to bind BTBD2 were mapped to residues 215 to 329. BTBD2 with an epitope tag localized to cytoplasmic bodies. Using truncated versions that direct BTBD2 and TOP1 to the same cellular compartment, either the nucleus or the cytoplasm, co-localization was demonstrated in co-transfected Hela cells. The supercoil relaxation and DNA cleavage activities of topoisomerase I in vitro were affected little or none by co-incubation with BTBD2. Northern analysis revealed only a single sized mRNA for each BTBD1 and BTBD2 in all human tissues tested. Characterization of BTBD2 mRNA revealed a 255 nucleotide 90% GC-rich region predicted to encode the N-terminus. BTBD1 and BTBD2 are widely if not ubiquitously expressed in human tissues, and have two paralogs as well as putative orthologs in C. elegans and D. melanogaster. CONCLUSIONS: BTBD1 and BTBD2 belong to a small family of uncharacterized proteins that appear to be specific to animals. Epitope-tagged BTBD2 localized to cytoplasmic bodies. The characterization of BTBD1 and BTBD2 and their interaction with TOP1 is underway

    Cardiac and vascular structure and function parameters do not improve with alternate nightly home hemodialysis: An interventional cohort study

    Get PDF
    Background: Nightly extended hours hemodialysis may improve left ventricular hypertrophy and function and endothelial function but presents problems of sustainability and increased cost. The effect of alternate nightly home hemodialysis (NHD) on cardiovascular structure and function is not known

    Carvedilol and cardiac biomarkers in dialysis patients: Secondary analysis of a randomized controlled trial

    Get PDF
    Published online: December 04, 2017Background/Aims: Cardiac biomarkers are associated with cardiac abnormalities and adverse outcomes in dialysis patients. Our aim was to report the effect of the beta-blocker carvedilol on cardiac biomarkers in adult dialysis patients. Methods: The Beta-Blocker to Lower Cardiovascular Dialysis Events Feasibility Study was a randomized controlled trial comparing carvedilol to placebo. Serum and plasma were collected before the run-in, then 6 and 12 months post-randomization to measure B-type Natriuretic Peptide (BNP), N-terminal BNP (NT-ProBNP), high-sensitivity cardiac troponins I (hs-TnI) and T (hs-TnT), and galectin-3. Left ventricular global longitudinal strain (GLS) was measured by echocardiography at baseline. Results: Seventy-two participants were recruited of whom 49 completed the run-in and were randomized to carvedilol (n=26) or placebo (n=23). Baseline echocardiography demonstrated median (inter-quartile range) GLS of -14.27% (-16.63 to -11.93). NTproBNP and hs-TnT correlated with GLS (Spearman’s rho=0.34 [p=0.018] and rho=0.28 [p=0.049], respectively). Median change scores from baseline to 12 months did not differ significantly between participants with complete biomarker data randomized to carvedilol (n=15) or placebo (n=16) for any biomarkers. Conclusions: NT-proBNP and hs-TnT were associated with GLS. However, changes in levels of the biomarkers from baseline to 12 months were not different between groups randomized to carvedilol and placebo.Matthew A. Roberts, Darsy Darssan, Sunil V. Badve, Robert P. Carroll, Magid A. Fahim, Brian A. Haluska, Carmel M. Hawley, Nicole M. Isbel, Mark R. Marshall, Elaine M. Pascoe, Eugenie Pedagogos, Helen L. Pilmore, Paul Snelling, Tony Stanton, Ken-Soon Tan, Andrew M. Tonkin, Liza A. Vergara, Francesco L. Ierin

    A novel AKT3 mutation in melanoma tumours and cell lines

    Get PDF
    Recently, a rare activating mutation of AKT1 (E17K) has been reported in breast, ovarian, and colorectal cancers. However, analogous activating mutations in AKT2 or AKT3 have not been identified in any cancer lineage. To determine the prevalence of AKT E17K mutations in melanoma, the most aggressive form of skin cancer, we analysed 137 human melanoma specimens and 65 human melanoma cell lines for the previously described activating mutation of AKT1, and for analogous mutations in AKT2 and AKT3. We identified a single AKT1 E17K mutation. Remarkably, a previously unidentified AKT3 E17K mutation was detected in two melanomas (from one patient) as well as two cell lines. The AKT3 E17K mutation results in activation of AKT when expressed in human melanoma cells. This represents the first report of AKT mutations in melanoma, and the initial identification of an AKT3 mutation in any human cancer lineage. We have also identified the first known human cell lines with naturally occurring AKT E17K mutations

    Fusion between Leishmania amazonensis and Leishmania major Parasitophorous Vacuoles: Live Imaging of Coinfected Macrophages

    Get PDF
    Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes - which were destroyed - differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation – a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs

    Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells

    Get PDF
    The breast cancer stem cell (BCSC) hypotheses suggest that breast cancer is derived from a single tumor-initiating cell with stem-like properties, but the source of these cells is unclear. We previously observed that induction of an immune response against an epithelial breast cancer led in vivo to the T-cell-dependent outgrowth of a tumor, the cells of which had undergone epithelial to mesenchymal transition (EMT). The resulting mesenchymal tumor cells had a CD24(-/lo)CD44(+) phenotype, consistent with BCSCs. In the present study, we found that EMT was induced by CD8 T cells and the resulting tumors had characteristics of BCSCs, including potent tumorigenicity, ability to reestablish an epithelial tumor, and enhanced resistance to drugs and radiation. In contrast to the hierarchal cancer stem cell hypothesis, which suggests that breast cancer arises from the transformation of a resident tissue stem cell, our results show that EMT can produce the BCSC phenotype. These findings have several important implications related to disease progression and relapse

    Phase I and pharmacokinetic study of irinotecan in combination with R115777, a farnesyl protein transferase inhibitor

    Get PDF
    The aims of this study were to determine the maximum-tolerated dose (MTD), toxicity profile, and pharmacokinetics of irinotecan given with oral R115777 (tipifarnib), a farnesyl protein transferase inhibitor. Patients were treated with escalating doses of irinotecan with interval-modulated dosing of R115777 (continuously or on days 1-14, and repeated every 21 days). In total, 35 patients were entered onto the trial for a median duration of treatment of 43 days (range, 5-224 days). Neutropenia and thrombocytopenia were the dose-limiting toxicities; other side effects were mostly mild. The MTD was established at R115777 300 mg b.i.d. for 14 consecutive days with irinotecan 350 mg m-2 given every 3 weeks starting on day 1. Three patients had a partial response and 14 had stable disease. In the continuous schedule, the area under the curves of irinotecan and its active metabolite SN-38 were 20.0% (P = 0.004) and 38.0% (P < 0.001) increased by R115777, respectively. Intermittent dosing of R115777 at a dose of 300 mg b.i.d. for 14 days every 3 weeks is the recommended dose of R115777 in combination with the recommended single-agent irinotecan dose of 350 mg m-2
    • …
    corecore