12 research outputs found

    Patients with Active Acromegaly are at High Risk of 25(OH)D Deficiency

    Get PDF
    Acromegaly is a chronic disease characterized by hypersecretion of growth hormone (GH) and insulin-like growth factor 1 (IGF-1). Electrolyte disturbances such as hypercalcemia and hyperphosphatemia are reported in patients with this disorder. There is limited data on vitamin D status in subjects with acromegaly. The aim of the study was to determine calcium, inorganic phosphate, magnesium, alkaline phosphatase and 25(OH)D levels with regard to the activity of the disease. We also studied correlations of 25(OH)D and IGF-1, GH, body mass, body mass index and age. A study group consisted of 55 acromegalic patients, and was divided into three subgroups: active acromegaly (AA), well-controlled acromegaly (WCA), cured acromegaly (CA). We enrolled 29 healthy subjects to a control group (CG). Vitamin D deficiency was recorded in all AA patients, 13 WCA patients (92.86%), 10 CA patients (62.5%) and 13 controls (54.17%). The highest 25(OH)D levels were found in the CG group and the lowest in the AA group (p=0.012). The dose of octreotide did not influence serum 25(OH)D levels. A significant positive correlation between IGF-1 and 25(OH)D levels was observed in the AA group (r=0.58, p=0.024). Inorganic phosphate levels were the highest in the AA group. In conclusion, active acromegalic patients have lower 25(OH)D levels in comparison with the control group and are at higher risk of vitamin D deficiency

    Usefulness of the C2HEST Score in Predicting the Clinical Outcomes of COVID-19 in Diabetic and Non-Diabetic Cohorts

    No full text
    Background: Diabetes mellitus is among the most frequent comorbidities worsening COVID-19 outcome. Nevertheless, there are no data regarding the optimal risk stratification of patients with diabetes and COVID-19. Since individual C2HEST components reflect the comorbidities, we assumed that the score could predict COVID-19 outcomes. Material and Methods: A total of 2184 medical records of patients hospitalized for COVID-19 at the medical university center were analyzed, including 473 diabetic patients and 1666 patients without any glucose or metabolic abnormalities. The variables of patients’ baseline characteristics were retrieved to calculate the C2HEST score and subsequently the diabetic and non-diabetic subjects were assigned to the following categories: low-, medium- or high-risk. The measured outcomes included: in-hospital mortality; 3-month and 6-month all-cause mortality; non-fatal end of hospitalization (discharged home/sudden-deterioration/rehabilitation) and adverse in-hospital clinical events. Results: A total of 194 deaths (41%) were reported in the diabetic cohort, including 115 in-hospital deaths (24.3%). The 3-month and 6-month in-hospital mortality was highest in the high-risk C2HEST stratum. The C2HEST score revealed to be more sensitive in non-diabetic-group. The estimated six-month survival probability for high-risk subjects reached 0.4 in both cohorts whereas for the low-risk group, the six-month survival probability was 0.7 in the diabetic vs. 0.85 in the non-diabetic group—levels which were maintained during whole observation period. In both cohorts, receiver operating characteristics revealed that C2HEST predicts the following: cardiogenic shock; acute heart failure; myocardial injury; and in-hospital acute kidney injury. Conclusions: We demonstrated the usefulness and performance of the C2HEST score in predicting the adverse COVID-19 outcomes in hospitalized diabetic subjects

    Stratifications, Equisingularity and Triangulation

    No full text
    International audienceThis text is based on 3 lectures given in Cuernavaca in June 2018 about stratifications of real and complex analytic varieties and subanalytic and definable sets. The first lecture contained an introduction to Whitney stratifications, Kuo-Verdier stratifications and Mostowski's Lipschitz stratifications. The second lecture concerned equisingularity along strata of a regular stratification for the different regularity conditions: Whitney, Kuo-Verdier, and Lipschitz, including thus the Thom-Mather first isotopy theorem and its variants. (Equisingularity means continuity along each stratum of the local geometry at the points of the closures of the adjacent strata.) A short discussion follows of equisingularity for complex analytic sets including Zariski's problem about topological invariance of the multiplicity of complex hypersurfaces and its bilipschitz counterparts. In the real subanalytic (or definable) case we mention that equimultiplicity along a stratum translates as continuity of the density at points on the stratum, and quote the relevant results of Comte and Valette generalising Hironaka's 1969 theorem that complex analytic Whitney stratifications are equimultiple along strata. The third lecture provided further evidence of the tameness of Whitney stratified sets and of Thom maps, by describing triangulation theorems in the different categories, and including definable and Lipschitz versions. While on the subject of Thom maps we indicate examples of their use in complex equisingularity theory and in the definition of Bekka's (c)-regularity. Some very new results are described as well as old ones

    Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task

    No full text
    BACKGROUND: Recent studies have successfully demonstrated the use of deep-learning algorithms for dermatologist-level classification of suspicious lesions by the use of excessive proprietary image databases and limited numbers of dermatologists. For the first time, the performance of a deep-learning algorithm trained by open-source images exclusively is compared to a large number of dermatologists covering all levels within the clinical hierarchy. METHODS: We used methods from enhanced deep learning to train a convolutional neural network (CNN) with 12,378 open-source dermoscopic images. We used 100 images to compare the performance of the CNN to that of the 157 dermatologists from 12 university hospitals in Germany. Outperformance of dermatologists by the deep neural network was measured in terms of sensitivity, specificity and receiver operating characteristics. FINDINGS: The mean sensitivity and specificity achieved by the dermatologists with dermoscopic images was 74.1% (range 40.0%-100%) and 60% (range 21.3%-91.3%), respectively. At a mean sensitivity of 74.1%, the CNN exhibited a mean specificity of 86.5% (range 70.8%-91.3%). At a mean specificity of 60%, a mean sensitivity of 87.5% (range 80%-95%) was achieved by our algorithm. Among the dermatologists, the chief physicians showed the highest mean specificity of 69.2% at a mean sensitivity of 73.3%. With the same high specificity of 69.2%, the CNN had a mean sensitivity of 84.5%. INTERPRETATION: A CNN trained by open-source images exclusively outperformed 136 of the 157 dermatologists and all the different levels of experience (from junior to chief physicians) in terms of average specificity and sensitivity
    corecore