27 research outputs found

    Observing changes in human functioning during induced sleep deficiency and recovery periods

    Get PDF
    Prolonged periods of sleep restriction seem to be common in the contemporary world. Sleep loss causes perturbations of circadian rhythmicity and degradation of waking alertness as reflected in attention, cognitive efficiency and memory. Understanding whether and how the human brain recovers from chronic sleep loss is important not only from a scientific but also from a public health perspective. In this work we report on behavioral, motor, and neurophysiological correlates of sleep loss in healthy adults in an unprecedented study conducted in natural conditions and comprising 21 consecutive days divided into periods of 4 days of regular life (a baseline), 10 days of chronic partial sleep restriction (30% reduction relative to individual sleep need) and 7 days of recovery. Throughout the whole experiment we continuously measured the spontaneous locomotor activity by means of actigraphy with 1-minute resolution. On a daily basis the subjects were undergoing EEG measurements (64-electrodes with 500 Hz sampling frequency): resting state with eyes open and closed (8 minutes long each) followed by Stroop task lasting 22 minutes. Altogether we analyzed actigraphy (distributions of rest and activity durations), behavioral measures (reaction times and accuracy from Stroop task) and EEG (amplitudes, latencies and scalp maps of event-related potentials from Stroop task and power spectra from resting states). We observed unanimous deterioration in all the measures during sleep restriction. Further results indicate that a week of recovery subsequent to prolonged periods of sleep restriction is insufficient to recover fully. Only one measure (mean reaction time in Stroop task) reverted to baseline values, while the others did not.Fil: Ochab, Jeremi K.. Jagiellonian University. Marian Smoluchowski Institute of Physics; Polonia. Jagiellonian University. Mark Kac Complex Systems Research Centre; PoloniaFil: Szwed, Jerzy. Jagiellonian University. Marian Smoluchowski Institute of Physics; Polonia. Jagiellonian University. Mark Kac Complex Systems Research Centre; PoloniaFil: Oles, Katarzyna. Jagiellonian University. Marian Smoluchowski Institute of Physics; PoloniaFil: Beres, Anna. Jagiellonian University. Department of Cognitive Neuroscience and Neuroergonomics; PoloniaFil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnologia. Centro de Estudios Multidisciplinarios En Sistemas Complejos y Ciencias del Cerebro.; ArgentinaFil: Domagalik, Aleksandra. Jagiellonian University. Department of Cognitive Neuroscience and Neuroergonomics; PoloniaFil: Frafrowicz, Magdalena. Jagiellonian University. Department of Cognitive Neuroscience and Neuroergonomics; PoloniaFil: Oginska, Halszka. Jagiellonian University. Department of Cognitive Neuroscience and Neuroergonomics; PoloniaFil: Gudowska-Nowak, Ewa. Jagiellonian University. Marian Smoluchowski Institute of Physics; Polonia. Jagiellonian University. Małopolska Center of Biotechnology ; PoloniaFil: Marek, Tadeusz. Jagiellonian University. Department of Cognitive Neuroscience and Neuroergonomic; Polonia. Jagiellonian University. Małopolska Center of Biotechnology; ArgentinaFil: Nowak, Maciej A.. Jagiellonian University. Marian Smoluchowski Institute of Physics; Polonia. Jagiellonian University. Mark Kac Complex Systems Research Centre; Poloni

    Different types of errors in saccadic task are sensitive to either time of day or chronic sleep restriction.

    Get PDF
    Circadian rhythms and restricted sleep length affect cognitive functions and, consequently, the performance of day to day activities. To date, no more than a few studies have explored the consequences of these factors on oculomotor behaviour. We have implemented a spatial cuing paradigm in an eye tracking experiment conducted four times of the day after one week of rested wakefulness and after one week of chronic partial sleep restriction. Our aim was to verify whether these conditions affect the number of a variety of saccadic task errors. Interestingly, we found that failures in response selection, i.e. premature responses and direction errors, were prone to time of day variations, whereas failures in response execution, i.e. omissions and commissions, were considerably affected by sleep deprivation. The former can be linked to the cue facilitation mechanism, while the latter to wake state instability and the diminished ability of top-down inhibition. Together, these results may be interpreted in terms of distinctive sensitivity of orienting and alerting systems to fatigue. Saccadic eye movements proved to be a novel and effective measure with which to study the susceptibility of attentional systems to time factors, thus, this approach is recommended for future research

    Tracing diurnal differences in brain anatomy with voxel-based morphometry - associations with sleep characteristics

    No full text
    Multiple aspects of brain functioning, including arousal, motivation, and cognitive performance, are governed by circadian rhythmicity. Although the recent rise in the use of magnetic resonance imaging (MRI) has enabled investigations into the macroscopic correlates of the diurnal brain processes, neuroanatomical studies are scarce. The current work investigated how time-of-day (TOD) impacts white (WM) and grey matter (GM) volumes using voxel-based morphometry (VBM) in a large dataset (N = 72) divided into two equal, comparable subsamples to assess the replicability of effects. Furthermore, we aimed to assess how the magnitude of these diurnal differences was related to actigraphy-derived indices of sleep health. The results extend the current knowledge by reporting that TOD is predominantly associated with regional WM volume decreases. Additionally, alongside corroborating previously observed volumetric GM decreases, we provide the first evidence for positive TOD effects. Higher replicability was observed for WM, with the only two replicated GM clusters being volumetric increases in the amygdala and hippocampus, and decreases in the retrosplenial cortex, with the latter more pronounced in individuals with shorter sleep times. These findings implicate the existence of region-specific mechanisms behind GM effects, which might be related to cognitive processes taking place during wakefulness and homeostatic sleep pressure.</p

    Scale-free fluctuations in behavioral performance: delineating changes in spontaneous behavior of humans with induced sleep deficiency.

    Get PDF
    The timing and dynamics of many diverse behaviors of mammals, e.g., patterns of animal foraging or human communication in social networks exhibit complex self-similar properties reproducible over multiple time scales. In this paper, we analyze spontaneous locomotor activity of healthy individuals recorded in two different conditions: during a week of regular sleep and a week of chronic partial sleep deprivation. After separating activity from rest with a pre-defined activity threshold, we have detected distinct statistical features of duration times of these two states. The cumulative distributions of activity periods follow a stretched exponential shape, and remain similar for both control and sleep deprived individuals. In contrast, rest periods, which follow power-law statistics over two orders of magnitude, have significantly distinct distributions for these two groups and the difference emerges already after the first night of shortened sleep. We have found steeper distributions for sleep deprived individuals, which indicates fewer long rest periods and more turbulent behavior. This separation of power-law exponents is the main result of our investigations, and might constitute an objective measure demonstrating the severity of sleep deprivation and the effects of sleep disorders
    corecore