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Abstract
Circadian rhythms and restricted sleep length affect cognitive functions and, consequently,

the performance of day to day activities. To date, no more than a few studies have explored

the consequences of these factors on oculomotor behaviour. We have implemented a spa-

tial cuing paradigm in an eye tracking experiment conducted four times of the day after one

week of rested wakefulness and after one week of chronic partial sleep restriction. Our aim

was to verify whether these conditions affect the number of a variety of saccadic task errors.

Interestingly, we found that failures in response selection, i.e. premature responses and di-

rection errors, were prone to time of day variations, whereas failures in response execution,

i.e. omissions and commissions, were considerably affected by sleep deprivation. The for-

mer can be linked to the cue facilitation mechanism, while the latter to wake state instability

and the diminished ability of top-down inhibition. Together, these results may be interpreted

in terms of distinctive sensitivity of orienting and alerting systems to fatigue. Saccadic eye

movements proved to be a novel and effective measure with which to study the susceptibili-

ty of attentional systems to time factors, thus, this approach is recommended for future

research.

Introduction
Throughout the day, cognitive performance stays under the combined influence of homeostatic
sleep pressure and circadian processes. Interplay between these two factors affects the perfor-
mance of everyday tasks and interferes with a contemporary lifestyle characterized by a large
accumulation of duties which require continuous and prolonged cognitive efficiency. Such de-
mands result in a reduction in sleep time, which has become a hallmark of modern society. Yet,
most laboratory experiments deal with total sleep deprivation assuming that the consequences
of chronic partial sleep restriction are comparable to those of total sleep loss [1]. The effects of
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sleep restriction are a general decrease in alertness, wake state instability (including lapses of at-
tention and microsleeps), perseveration of ineffective solutions, and weakened memory/learn-
ing performance [2]. However, sustained attention deteriorates much more than the
performance of challenging working memory tasks [3].

Even in a state of rested wakefulness, circadian rhythm driven by endogenous (eg. the circa-
dian process and sleep pressure resulting in sleepiness and fatigue) as well as exogenous factors
(eg. lighting and social environment) lead to variations in cognitive functioning [4]. However,
assessing human cognitive performance rhythms is complicated by two masking factors: the
kind of task used and inter-individual differences in task performance [5]. Moreover, the multi-
dimensional nature of attention itself is probably the source of inconsistencies between the var-
ious studies of the circadian and homeostatic effects on performance relevant to the attentional
domain investigated [4]

Errors arising due to sleep pressure and/or circadian rhythm may be related to either re-
sponse selection or execution process. Their characteristics would vary depending on the neu-
ronal network involved: alerting, orienting or executive control [6], which are responsible for
maintaining optimal vigilance, ordering sensory input and top-down regulation, respectively.
Errors may also be differentiated depending on sleep pressure and the circadian process. As
suggested by Valdez and colleagues [7] vigilance (sustained attention, concentration) is linked
to fatigue, i.e. the homeostatic process, while tonic alertness (general capacity to respond),
phasic alertness (the capacity to respond to a stimulus after a warning signal) and selective
attention (the capacity to respond to a specific stimulus and ignore others) show circadian
variations.

Research on sleep deficit in terms of alertness and vigilance has concentrated mostly on
manual responses [8]. The few experiments that have addressed oculomotor responses, have
focused mostly on the velocity and latency of eye movements (eg. [9]). The typology of the sac-
cadic reactions is little explored—especially in the context of chronic sleep loss or circadian
rhythms. However, saccadic responses provide a valid model for investigating basic cognitive
processes, especially attentional capacities, and flexible control over behaviour. They are con-
trolled by different low- and high-level systems [10] and by separate excitatory and inhibitory
neural pathways [11]. These neural pathways are strictly linked with the top-down and bot-
tom-up attentional processes, influencing eg. cue facilitation mechanisms in saccadic eye
movement [12]. Thus, different types of saccadic task errors should be considered failures of
diverse attentional functions.

The aim of this study was to verify the effects of chronic sleep deficit and time of day on
human saccadic task performance. We hypothesized that those conditions would differentiate
the oculomotor behaviour, and, in consequence, provide new information about the function-
ing of attentional sub-systems.

Materials and Methods

Participants
Twenty four paid volunteers participated in this experiment (12 females, mean age 22.7 ± 1.6
years). Participants met the experiment requirements: right-handedness, right-eyed, normal or
corrected-to-normal vision, no physical or psychiatric disorders. They were all non-smokers
and drug-free. The absence of sleep problems or excessive sleepiness was confirmed by the
Pittsburgh Sleep Quality Index [13], and the Epworth Sleepiness Scale [14]. Mean sleep quality
index was 4.08 (std. err. 0.46) and the daytime sleepiness score was 5.71 (std. err. 0.53). Neither
extremely morning- nor evening-oriented subjects were qualified for the study (Chronotype
Questionnaire; [15]).
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Ethics Statement
Participants were informed about the procedure and goals of the study and gave their written
consent. The study was approved by the Bioethics Commission at the Jagiellonian University.

Procedure
The experimental task was performed in two conditions: rested wakefulness (RW—after a
week with unrestricted, fully restorative sleep) and chronic sleep deficit (SD, after seven days of
sleep curtailment). The order of experimental sessions (RW and SD) was counterbalanced
across all participants. The sessions were separated by at least two weeks in order to minimize
the residual effects of sleep deficit on performance. In the SD condition, the participants were
instructed to shorten their sleep by delaying sleep time and using an alarm clock in the morn-
ing. The sleep length was individually calculated for them as two thirds of the self reported op-
timal sleep duration. The actual sleep duration and the sleep timing were verified on the basis
of movement recorded by a Micro Motionlogger SleepWatch (Ambulatory Monitoring, Inc.,
Ardsley, NY) which was worn during the week before each experimental day on the partici-
pant’s non-dominant wrist. According to actigraphy measurements, the sleep length in the SD
condition was reduced by 30% in comparison to the RW condition. The severity of subjective
sleep loss consequences was assessed with a CHICa scale [16].

All the participants performed an experimental task four times during the day: at approxi-
mately 10:00, 14:00, 18:00 and 22:00. Before each measurement session, participants were
asked to estimate their alertness using the Karolinska Sleepiness Scale (KSS; [17]). A semi con-
stant routine protocol was applied: room temperature and light intensity were kept constant,
caloric intake and the level of motor activity were controlled. The participants spent approxi-
mately 14 hours in a controlled laboratory environment. During experimental days, they were
allowed to engage in non-strenuous activities (eg. reading, watching videos, conversation). Caf-
feine intake was banned; alcohol consumption during the preceding week was restricted.

Stimuli and task
Amodified spatial cueing task [18] was prepared using E-Prime 2.0 (Psychology Software
Tools) and presented on a 17-inch screen located approximately 80cm from participants’ eyes.
Targets and cues were presented in six possible locations (Fig 1A) at 8° and 2° of visual angle in
x-axis and 5° and 1° in y-axis of visual angle respectively. Leftwards and rightwards target loca-
tions were distributed equally, whereas middle target locations were weighted by 50% vs. 25%
of upper and 25% of lower locations. The task comprised congruent trials with target stimuli
preceded by congruent directional cues (60%, Fig 1B), incongruent trials with target stimuli
preceded by incongruent directional cues (15%, Fig 1C), and stimuli without cues (25%, Fig
1D). The total number of stimuli in the task was 500 in each measurement. Targets were pre-
sented for 500ms and cues for 200ms. The intertrial interval was varied in the range of
80020133500ms with average of 2200ms. Time interval between cue and target varied between
200 and 700ms with an average of 450ms. The participants were instructed to direct their atten-
tion and gaze from fixation point to targets only if they were preceded by a cue. The task lasted
about 35 minutes. One week prior to the first experimental day, participants were extensively
trained on the experimental task, in order to avoid the influence of a learning process on the
number of errors.
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Eye Tracking data acquisition and analysis
Eye position was monitored with Smart Eye Pro (Smart Eye AB, Göteborg, Sweden). This eye
tracking system uses the reflections of infrared flashes on the cornea to find the centre of eyes
and calculate gaze direction. It has a 60 Hz sampling frequency, a headtracking range ±65° and
eye tracking range ±20° of visual angle and a tracking accuracy of 0.5°. The analysis of eye-
tracking data was done using the Python language-based program, written for the purpose of
the study. Saccades were detected using velocity and distance criteria, i.e. the movement was
classified as a saccade only when its velocity reached 35°/s and its distance was at least 2° of vi-
sual angle. Oculomotor reaction time was calculated as a difference between target appearance
and the beginning of a saccade.

Subjects were instructed to react only to targets preceded by a cue. Saccadic reactions were
classified according to following criteria. The reactions to a target preceded by a cue (either
congruent or incongruent) were recognized as correct (HIT) if the direction of the eye move-
ment was consistent with the target position and if the reaction time was at least 80ms. Sac-
cades executed earlier than 80ms after the stimulus onset (i.e. anticipatory saccades; Fischer
et al., 1995) and those before target appearance, regardless of the direction, were labelled pre-
mature reactions (PR). A lack of reaction during the stimulus presentation was considered as
an omission error (OM). If the direction of the first saccade was opposite to the target location,

Fig 1. Experimental task used in the study. (A) Possible locations for cues and targets; (B) Congruant trial;
(C) Incongruent trial; (D) Trial without a cue.

doi:10.1371/journal.pone.0126502.g001
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the reaction was classified as a direction error (DirERR). In trials without a cue, the lack of any
saccade was considered a correct rejection (CR). Reaction to the target not preceded by a cue
was labelled as an error of commission (COM). Examples of reactions are depicted on Fig 2.
Recordings in which the eye tracking signal was poor and classification was not possible were
discarded from further analyses. This resulted in an average loss of 6.4% (std.err. 1.3%) of
trials.

Results
The mean length of sleep during the RW condition (8h 9min ± 37min) was significantly longer
(t(23) = 15.66, p< 0.001) than the average length of sleep during the SD condition (5h
41min ± 29min). On average, participants in the SD condition restricted their sleep time by

Fig 2. Representative reactions in saccadic task for rightward centered stimuli.Reaction types for (A)
stimuli preceded by a cue and for (B) stimuli without a cue. HIT = correct reaction, DirERR = direction error,
PR = premature reaction, OM = omission, CR = correct rejection, COM = commision.

doi:10.1371/journal.pone.0126502.g002
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30% (± 8%) comparing to RW condition. The CHICa score differed significantly between the
two conditions (RW: 9.0 ± 8.4, SD: 38.1 ± 16.0, t(23) = 8.62, p< 0.001).

Overall saccadic task performance measurements are depicted in Table 1. The number of
each type of reactions was analysed as a proportion of the overall number of classified reac-
tions. An analysis of the variance (two-way ANOVA) with sleep condition and time of day
(TOD) as factors was performed separately for each type of reaction. The analysis showed that
the number of DirERRs changes significantly with TOD (F(3,69) = 3.51, p = 0.02; Fig 3A). A
post-hoc LSD test showed that this kind of error was committed significantly more frequently
in the first than in the second (p = 0.02) and the fourth session (p = 0.003). Considering that
the abundance of DirERRs were committed on incongruent trials, additional analysis was con-
ducted solely on these trials. The results presented similar TOD variations (F(3,69) = 3.32,
p = 0.025) to those obtained for both types of trials. The proportion of PR in the number of all
trials increased significantly depending on the TOD (F(3, 69) = 5.36, p = 0.002; Fig 3B). A post-
hoc test showed significant difference between the morning session and other times of day:
14:00 (p = 0.02), 18:00 (p = 0.002), and 22:00 (p = 0.0004).

The COM and OM showed no significant variation across different times of day. The
ANOVA revealed a significant difference in the number of these errors between RW and SD
conditions. The ratio of OM was significantly higher in the SD condition (F(1,23) = 13.61,
p = 0.001; Fig 4A) as was the proportion of COM (F(1,23) = 5.86, p = 0.02; Fig 4B). There was no
significant interaction of TOD and sleep conditions for any type of reaction.

Changes in subjective sleepiness measured by KSS before each session showed significant
variance between RW and SD condition (F(1,23) = 68.62, p< 0.001) and between the times of
the day (F(3,69) = 8.21, p< 0.001). There was no significant difference between average reaction
times, neither between the two sleep conditions, nor between times of the day. Mean latency
for all reaction are presented in Table 1.

Discussion
Following a basic distinction of erroneous responses, errors can be caused both by failures in
response execution, when the selected response program is correct but its implementation goes
sideways, and failures in response selection, when a wrong, not consistent with the task de-
mands, response program is executed [19]. In this study, we were able to distinguish four types
of errors lying beneath those categories. Failures in response execution took place when partici-
pants reacted to the cued target before its appearance (PR) or when they made a saccade to the
opposite direction of the target location (DirERR). Accordingly, failures in response selection
were observed either when participants shifted attention to uncued targets, while, according to
the instruction, they were supposed to maintain focus on the fixation point (COM) or when

Table 1. Performance in saccadic task.

Type of trial Type of reaction Percentage (std. err.) Reaction time (std. err.)

Targets preceded by a cue Correct reactions 83.1% (2.9%) C: 287ms (7ms); I: 340ms (4ms) *

Direction errors 2.1% (0.3%) 177 ms (3ms) *

Premature reactions 11.4% (2.6%) 44 ms (6ms) before target appearance *

Omissions 1.7% (0.4%) -

Targets without a cue Correct rejections 88.4% (1.9%) -

Commissions 11.6% (1.9%) 403 ms (13ms) *

Note: * indicate significant difference between reaction times in comparison to HIT in congruent trials (p < 0.001); C = congruent, I = incongruent.

doi:10.1371/journal.pone.0126502.t001
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participants did not execute a reaction on a cued target (OM). The different nature of the afore-
mentioned errors suggests them to be associated with separate attentional networks [20].
Namely, the unsuccessful implementation of the action indicates the area of response execution
was scanned ineffectively and the reaction was either inadequate or executed to a stimulus not
considered a target. It can also be explained in terms of the failure of the orienting network—
the mechanism responsible for shifting focus of attention on a potentially relevant area where
the stimulus may occur [6]. Respectively, failures in response selection are considered as a re-
sult of disruption in alerting network activity [21], crucial to achieving and maintaining readi-
ness to react to incoming stimuli.

The results of our study showed the time of day variations in susceptibility to PR and Dir-
ERR. These errors in response execution are related to the cue facilitation mechanism [22] as
the cue leads to the orienting of attention and facilitates programming a saccade to the cued lo-
cation. When the delay between the presentation of the gaze cue and the onset of a target is
short, there is an increased tendency to commit DirERR caused by an automatic saccade fol-
lowing the incongruent cues [23]. Facilitation leads not only to DirERR, but also to the antici-
patory saccades, in our case the PR, linked with decision-related neural activity [24]. The
number of both DirERR and PR was not affected by chronic sleep loss, which is in line with the

Fig 3. Significant time of day variations for two types of reaction: (A) DirERR; (B) PR.
DirERR = direction error, PR = premature reaction.

doi:10.1371/journal.pone.0126502.g003
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study of Martella et al. [25], showing that the facilitation effect is invulnerable to sleep deficit.
Interestingly, the number of DirERR increases during the post-lunch dip [26] and in the late
evening, whereas the number of PR increases constantly during the day. The worsening of per-
formance in the mid-afternoon has already been associated with the decreased efficiency of at-
tention disengagement in the orienting process of attention shifts between different locations
[27]. The worsening of performance in the late evening can be explained in terms of the fa-
tigue-related failure in response execution caused by a crash of the orienting attention network.
Thus, it can be concluded that the orienting attention sub-system is mostly prone to the circa-
dian and fatigue factors which cause a boost in cue facilitation and prediction mechanisms and
the increase of DirERR and PR. These findings are consistent with the results of our previous
study [28], which implemented neural measurements under the TOD condition and showed
decreasing activity of the orienting attentional system.

The increase in the number of OM under the condition of chronic sleep deficit, similar to
the acute condition, can be explained by the lapses of attention related to the wake state insta-
bility and microsleeps [2], during which the alerting sub-system of attention is compromised.
This explanation is consistent with the evidence that at least subjective alertness and the ability
to maintain sustained attention are highly influenced by sleep deprivation [3]. The increased

Fig 4. Significant changes between two sleep conditions for two types of reaction: (A) OM; (B) COM.
OM = omission, COM = commision.

doi:10.1371/journal.pone.0126502.g004
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number of COM, i.e. responses to no-go targets, is explained in terms of the diminished ability
of the top-down inhibition of dominant automatic response [29]. This is consistent with the
findings that response inhibition is particularly sensitive to sleep deprivation and occur even
before an increment in the number of OM [30]. It leads to inappropriate response selection re-
gardless of other factors such as the circadian process and the age of sleep-deprived partici-
pants [31]. Taken together, the increase in the number of OM and COM is understood in term
of changes in the interplay of two attentional processes: bottom-up and top-down, resulting in
problems maintaining stable and adequate behavioural reactions [32]. Considering that the er-
rors in response selection can be explained in terms of the failure of the alerting sub-system of
attention [6], it can be concluded that this system is highly prone to chronic sleep restriction. It
is in agreement with neuroimaging evidence, compensatory activation of the thalamus, the
brain region linked with alertness, occurs under the condition of sleep deficit [33].

The variations regarding both the alerting and orienting systems should be considered in re-
lation to the supervisory system of executive control [6]. Indeed, a recent computational ac-
count [34] indicated that complex behavioural patterns are a result of the interaction of these
three attention systems. The impairment of the executive control system may lead to a failure
of top-down processes and as a consequence, the disinhibition of bottom-up processes. On the
one hand, the impairment of the executive control network influences the orienting one, as the
former is linked with ‘rapid strategic control over attention’, enabling the voluntary switching
of attention between cue and target locations [6,12]. Thus, failures of the executive system may
lead to changes in the functioning of orienting-related cue facilitation mechanisms, causing
premature reactions and direction errors. On the other hand, the impairment of the executive
control network also influences the alerting network, leading to increasing stimulus-driven re-
actions causing an increased number of commissions. Moreover, wake state instability and
lapses of attention can be linked with the collapse of all attentional systems mirrored in the in-
creased number of omissions [2]. Taking our results into consideration, the functioning of the
executive control network seems to be sensitive to both chronic sleep deficit and different
times of day.

Conclusions
Diverse attentional components and performance indices of sustained attention are differently
affected by circadian and homeostatic processes (eg. [7,35]). Attention engagement and related
performance are not based on a single cognitive process, but on various processes which can be
differently affected by sleep restriction and circadian factors. In this study, we have shown that
the time of day variations cause an increase in premature responses and direction errors,
whereas chronic sleep deficit causes an increase in omissions and commissions. While the for-
mer can be related to the impairment of the orienting attentional system, the latter can be
linked to failure of the alerting attentional network. Disruption in the functioning of these two
systems can be caused by a decrement in the control ability mediated by the executive system.
However, the above conclusions need further investigation, not only on a behavioural but fore-
most, on a neuronal level.
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