347 research outputs found
Another Look at History
Stephen Roskill’s two-volume Naval Policy between the Wars (London: Collins, 1968 and 1976) has dominated the history of Britain’s interwar navy. Roskill—author of the official British naval history of World War II—had a vast store of knowledge, as well as personal experience and contacts with many of the individuals about whom he wrote
Instabilities in droplets spreading on gels
We report a novel surface-tension driven instability observed for droplets
spreading on a compliant substrate. When a droplet is released on the surface
of an agar gel, it forms arms/cracks when the ratio of surface tension gradient
to gel strength is sufficiently large. We explore a range of gel strengths and
droplet surface tensions and find that the onset of the instability and the
number of arms depend on the ratio of surface tension to gel strength. However,
the arm length grows with an apparently universal law L ~ t^{3/4}
Exact Solutions of Five Dimensional Anisotropic Cosmologies
We solve the five dimensional vacuum Einstein equations for several kinds of
anisotropic geometries. We consider metrics in which the spatial slices are
characterized as Bianchi types-II and V, and the scale factors are dependent
both on time and a non-compact fifth coordinate. We examine the behavior of the
solutions we find, noting for which parameters they exhibit contraction over
time of the fifth scale factor, leading naturally to dimensional reduction. We
explore these within the context of the induced matter model: a Kaluza-Klein
approach that associates the extra geometric terms due to the fifth coordinate
with contributions to the four dimensional stress-energy tensor.Comment: 11 page
The Behavior of Kasner Cosmologies with Induced Matter
We extend the induced matter model, previously applied to a variety of
isotropic cases, to a generalization of Bianchi type-I anisotropic cosmologies.
The induced matter model is a 5D Kaluza-Klein approach in which assumptions of
compactness are relaxed for the fifth coordinate, leading to extra geometric
terms. One interpretation of these extra terms is to identify them as an
``induced matter'' contribution to the stress-energy tensor. In similar spirit,
we construct a five dimensional metric in which the spatial slices possess
Bianchi type-I geometry. We find a set of solutions for the five dimensional
Einstein equations, and determine the pressure and density of induced matter.
We comment on the long-term dynamics of the model, showing that the assumption
of positive density leads to the contraction over time of the fifth scale
factor.Comment: 14 page
Oxygen Moment Formation and Canting in Li2CuO2
The possibilities of oxygen moment formation and canting in the quasi-1D
cuprate Li2CuO2 are investigated using single crystal neutron diffraction at 2
K. The observed magnetic intensities could not be explained without the
inclusion of a large ordered oxygen moment of 0.11(1) Bohr magnetons.
Least-squares refinement of the magnetic structure of Li2CuO2 in combination
with a spin-density Patterson analysis shows that the magnetization densities
of the Cu and O atoms are highly aspherical, forming quasi-1D ribbons of
localised Cu and O moments. Magnetic structure refinements and low-field
magnetization measurements both suggest that the magnetic structure of Li2CuO2
at 2 K may be canted. A possible model for the canted configuration is
proposed.Comment: 10 pages, 8 figures (screen resolution
The Primordial Inflation Polarization Explorer (PIPER)
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne
cosmic microwave background (CMB) polarimeter designed to search for evidence
of inflation by measuring the large-angular scale CMB polarization signal.
BICEP2 recently reported a detection of B-mode power corresponding to the
tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is
caused by inflationary gravitational waves (IGWs), then there should be a
corresponding increase in B-mode power on angular scales larger than 18
degrees. PIPER is currently the only suborbital instrument capable of fully
testing and extending the BICEP2 results by measuring the B-mode power spectrum
on angular scales = ~0.6 deg to 90 deg, covering both the reionization
bump and recombination peak, with sensitivity to measure the tensor-to-scalar
ratio down to r = 0.007, and four frequency bands to distinguish foregrounds.
PIPER will accomplish this by mapping 85% of the sky in four frequency bands
(200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from
the northern and southern hemispheres. The instrument has background-limited
sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal
onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor
(TES) bolometers held at 140 mK. Polarization sensitivity and systematic
control are provided by front-end Variable-delay Polarization Modulators
(VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow
PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each
pointing. We describe the PIPER instrument and progress towards its first
flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
- …