1,102 research outputs found
Many-body wave function for a quantum dot in a weak magnetic field
The ground states of parabolically confined electrons in a quantum dot are studied by both direct numerical diagonalization and quantum Monte Carlo (QMC) methods. We present a simple but accurate variational many-body wave function for the dot in the limit of a weak magnetic field. The wave function has the center-of-mass motion restricted to the lowest-energy state and the electron-electron interaction is taken into account by a Jastrow two-body correlation factor. The optimized wave function has an accuracy very close to the state-of-the-art numerical diagonalization calculations. The results and the computational efficiency indicate that the presented wave function combined with the QMC method suits ideally for studies of large quantum dots.Peer reviewe
Seven exercises planned to stimulate the flow of ideas in creative composition
Thesis (Ed.M.)--Boston Universit
Wave function engineering in quantum dot-ring nanostructures
Modern nanotechnology allows producing, depending on application, various
quantum nanostructures with the desired properties. These properties are
strongly influenced by the confinement potential which can be modified, e.g.,
by electrical gating. In this paper we analyze a nanostructure composed of a
quantum dot surrounded by a quantum ring. We show that depending on the details
of the confining potential the electron wave functions can be located in
different parts of the structure. Since the properties of such a nanostructure
strongly depend on the distribution of the wave functions, varying the applied
gate voltage one can easily control them. In particular, we illustrate the high
controllability of the nanostructure by demonstrating how its coherent,
optical, and conducting properties can be drastically changed by a small
modification of the confining potential.Comment: 8 pages, 10 figures, 2 tables, revte
Physical activity and peripheral artery disease : Two prospective cohort studies and a systematic review
Background and aims: Physical activity is a modifiable risk factor for cardiovascular disease and an important therapy in individuals with intermittent claudication. However, its role in the development of peripheral artery disease (PAD) is unclear. We have examined the evidence of the association between physical activity and development of PAD. Methods: We searched PubMed, EMBASE and CINAHL Plus in August 2018 for original studies of physical activity and PAD. Studies reporting prevalence or incidence of PAD by categories of physical activity (an amount of activity per unit of time) were included. In addition, we analysed unpublished individual-level data from two register-linked cohort studies, Finnish Public Sector Study (n=63,924) and Whitehall II (n=10,200). Due to heterogeneity in the assessment of physical activity and PAD, we provide a qualitative synthesis of the findings. Results: Evidence from 18 studies (15 cross-sectional/case-control and 7 prospective studies) of the association between physical activity and PAD in total of 152,188 participants, including 3971 PAD patients, suggests that individuals with a diagnosis or clinical findings of PAD were less physically active, regardless of whether activity was self-reported or measured using accelerometers. The findings from the longitudinal studies point to more intense physical activity being associated with lower odds of developing PAD; however, the study-specific findings lacked power to precisely estimate this relationship. Conclusions: Individuals with PAD were less physically active than those without PAD. The longitudinal findings suggest that physical activity decreases the risk of PAD, although better powered studies are needed to confirm this.Peer reviewe
Change in neighborhood disadvantage and change in smoking behaviors in adults: a longitudinal, within-individual study
BACKGROUND: Evidence for an association between neighborhood disadvantage and smoking is mixed and mainly based on cross-sectional studies. To shed light on the causality of this association we examined whether change in neighborhood socioeconomic disadvantage is associated with within-individual change in smoking behaviors. METHODS: The study population comprised participants of the Finnish Public Sector study who reported a change in their smoking behavior between surveys in 2008/09 and 2012/13. We linked participants' residential addresses to a total population database on neighborhood disadvantage with 250 × 250m resolution. The outcome variables were changes in smoking status (being a smoker vs. not) as well as the intensity (heavy/moderate vs. light smoker). We used longitudinal case-crossover design, a method that accounts for time-invariant confounders by design. We adjusted models for time-varying covariates. RESULTS: Of the 3443 participants, 1714 quit while 967 began to smoke between surveys. Smoking intensity increased among 398 and decreased among 364 participants. The level of neighborhood disadvantage changed for 1078 participants because they moved residence. Increased disadvantage was associated with increased odds of being a smoker (odds ratio (OR) of taking up smoking 1.23 (95% CI 1.04-1.47) per 1 standard deviation (SD) increase in standardized national disadvantage score). OR for being a heavy/moderate (vs. light) smoker was 1.14 (95% CI 0.85-1.52) when disadvantage increased by 1 SD. CONCLUSIONS: These within-individual results link an increase in neighborhood socioeconomic disadvantage, due to move in residence, with subsequent smoking behaviors
Comparison of 'shallow' and 'deep' junction architectures for MBE-grown InAs/GaAs quantum dot solar cells
We report on the fabrication of InAs/GaAs quantum dot solar cells with high open circuit voltage by molecular beam epitaxy. `Shallow' and `deep' junction architectures were compared. The highest open circuit voltage of 0.94 V was obtained for the `shallow' junction configuration. The open circuit voltage of InAs quantum dot solar cells decreased only by ~40 mV compared to GaAs reference cells for both junction architectures indicating high quality quantum dots. The open circuit voltage of InAs/GaAs quantum dot solar cells was also found to be dependent on the size of quantum dots
The effect of constitutive representations and structural constituents of ligaments on knee joint mechanics
Abstract Ligaments provide stability to the human knee joint and play an essential role in restraining motion during daily activities. Compression-tension nonlinearity is a well-known characteristic of ligaments. Moreover, simpler material representations without this feature might give reasonable results because ligaments are primarily in tension during loading. However, the biomechanical role of different constitutive representations and their fibril-reinforced poroelastic properties is unknown. A numerical knee model which considers geometric and material nonlinearities of meniscus and cartilages was applied. Five different constitutive models for the ligaments (spring, elastic, hyperelastic, porohyperelastic, and fibril-reinforced porohyperelastic (FRPHE)) were implemented. Knee joint forces for the models with elastic, hyperelastic and porohyperelastic properties showed similar behavior throughout the stance, while the model with FRPHE properties exhibited lower joint forces during the last 50% of the stance phase. The model with ligaments as springs produced the lowest joint forces at this same stance phase. The results also showed that the fibril network contributed substantially to the knee joint forces, while the nonfibrillar matrix and fluid had small effects. Our results indicate that simpler material models of ligaments with similar properties in compression and tension can be used when the loading is directed primarily along the ligament axis in tension
Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet
In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman
et al observed a linearly dispersing collective mode in quantum Hall
ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion
at small wave vector, the experimental mode velocity is slower than that
calculated by previous theories by a factor about 0.55. A better agreement with
the experimental data may possibly be achieved by taking the subband Landau
level coupling into account due to the finiteness of the layer thickness. A
novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio
Physical working conditions and subsequent sickness absence : a record linkage follow-up study among 19-39-year-old municipal employees
Purpose Physical work exposures are associated with sickness absence among older employees. We aimed to examine if they similarly contribute to all-cause sickness absence during early and mid-careers. Methods We used questionnaire data on physical work exposures linked to register data on sickness absence from 3542 municipal employees aged 19-39 years. Follow-up for the number of sickness absence days was 12 months. Exposures to physical workload, occupational environmental hazards, and sedentary work were divided into quartiles. In addition, duration of daily exposure to heavy work was included. Negative binomial regression models were used. Results Higher exposure to physical workload or hazardous exposures was associated with a higher number of sickness absence days. The age and gender adjusted rate ratios for sickness absence days among the participants whose exposure to physical workload was in the highest exposure quartile were 2.1 (95% CI 1.8-2.5) compared with those whose exposure was in the lowest quartile. In addition, rate ratios for sickness absence days among participants who reported that they do heavy physical work 1.1-2.0 h, 2.1-4.0 h or over 4 h daily were 1.6 (1.3-1.9), 1.5 (1.3-1.8) and 1.7 (1.5-2.1), respectively, compared with those who reported not doing physical work. Further adjustment for lifestyle factors or health characteristics attenuated the associations only slightly. Conclusion Exposure to physically demanding work is associated with a higher number of sickness absence days among municipal employees below 40 years of age. Physical working conditions should be considered when aiming to support later work ability.Peer reviewe
Coulombically Interacting Electrons in a One-dimensional Quantum Dot
The spectral properties of up to four interacting electrons confined within a
quasi one--dimensional system of finite length are determined by numerical
diagonalization including the spin degree of freedom. The ground state energy
is investigated as a function of the electron number and of the system length.
The limitations of a description in terms of a capacitance are demonstrated.
The energetically lowest lying excitations are physically explained as
vibrational and tunneling modes. The limits of a dilute, Wigner-type
arrangement of the electrons, and a dense, more homogeneous charge distribution
are discussed.Comment: 10 pages (excl. Figures), Figures added in POSTSCRIPT, LaTe
- …