12,190 research outputs found

    Computing in unipotent and reductive algebraic groups

    Full text link
    The unipotent groups are an important class of algebraic groups. We show that techniques used to compute with finitely generated nilpotent groups carry over to unipotent groups. We concentrate particularly on the maximal unipotent subgroup of a split reductive group and show how this improves computation in the reductive group itself.Comment: 22 page

    Analysis and design of a flat central finned-tube radiator

    Get PDF
    Computer program based on fixed conductance parameter yields minimum weight design. Second program employs variable conductance parameter and variable ratio of fin length to tube outside radius, and is used for radiator designs with geometric limitations. Major outputs of the two programs are given

    Computer program for preliminary design and analysis of V/STOL tip-turbine fans

    Get PDF
    Computer program for design and analysis of V/STOL tip turbine fan

    Topology of the gauge-invariant gauge field in two-color QCD

    Full text link
    We investigate solutions to a nonlinear integral equation which has a central role in implementing the non-Abelian Gauss's Law and in constructing gauge-invariant quark and gluon fields. Here we concern ourselves with solutions to this same equation that are not operator-valued, but are functions of spatial variables and carry spatial and SU(2) indices. We obtain an expression for the gauge-invariant gauge field in two-color QCD, define an index that we will refer to as the ``winding number'' that characterizes it, and show that this winding number is invariant to a small gauge transformation of the gauge field on which our construction of the gauge-invariant gauge field is based. We discuss the role of this gauge field in determining the winding number of the gauge-invariant gauge field. We also show that when the winding number of the gauge field is an integer 0\ell{\neq}0, the gauge-invariant gauge field manifests winding numbers that are not integers, and are half-integers only when =0\ell=0.Comment: 26 pages including 6 encapsulated postscript figures. Numerical errors have been correcte

    Quantum Gauge Equivalence in QED

    Full text link
    We discuss gauge transformations in QED coupled to a charged spinor field, and examine whether we can gauge-transform the entire formulation of the theory from one gauge to another, so that not only the gauge and spinor fields, but also the forms of the operator-valued Hamiltonians are transformed. The discussion includes the covariant gauge, in which the gauge condition and Gauss's law are not primary constraints on operator-valued quantities; it also includes the Coulomb gauge, and the spatial axial gauge, in which the constraints are imposed on operator-valued fields by applying the Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and spatial axial gauges to what we call ``common form,'' in which all particle excitation modes have identical properties. We also show that, once that common form has been reached, QED in different gauges has a common time-evolution operator that defines time-translation for states that represent systems of electrons and photons. By combining gauge transformations with changes of representation from standard to common form, the entire apparatus of a gauge theory can be transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages, REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author

    Analysis of low-temperature direct-condensing vapor-chamber fin and conducting fin radiators

    Get PDF
    Analysis of flat, direct-condensing finned-tube space radiator with vapor chamber, and central fin tube geometries for low temperature Rankine space power electric generating syste

    Gauge-invariant fields in the temporal gauge, Coulomb-gauge fields, and the Gribov ambiguity

    Full text link
    We examine the relation between Coulomb-gauge fields and the gauge-invariant fields constructed in the temporal gauge for two-color QCD by comparing a variety of properties, including their equal-time commutation rules and those of their conjugate chromoelectric fields. We also express the temporal-gauge Hamiltonian in terms of gauge-invariant fields and show that it can be interpreted as a sum of the Coulomb-gauge Hamiltonian and another part that is important for determining the equations of motion of temporal-gauge fields, but that can never affect the time evolution of ``physical'' state vectors. We also discuss multiplicities of gauge-invariant temporal-gauge fields that belong to different topological sectors and that, in previous work, were shown to be based on the same underlying gauge-dependent temporal-gauge fields. We argue that these multiplicities of gauge-invariant fields are manifestations of the Gribov ambiguity. We show that the differential equation that bases the multiplicities of gauge-invariant fields on their underlying gauge-dependent temporal-gauge fields has nonlinearities identical to those of the ``Gribov'' equation, which demonstrates the non-uniqueness of Coulomb-gauge fields. These multiplicities of gauge-invariant fields --- and, hence, Gribov copies --- appear in the temporal gauge, but only with the imposition of Gauss's law and the implementation of gauge invariance; they do not arise when the theory is represented in terms of gauge-dependent fields and Gauss's law is left unimplemented.Comment: 27 pages, 1 figure; text has been revised and references adde

    Persistent Transport Barrier on the West Florida Shelf

    Get PDF
    Analysis of drifter trajectories in the Gulf of Mexico has revealed the existence of a region on the southern portion of the West Florida Shelf (WFS) that is not visited by drifters that are released outside of the region. This so-called ``forbidden zone'' (FZ) suggests the existence of a persistent cross-shelf transport barrier on the southern portion of the WFS. In this letter a year-long record of surface currents produced by a Hybrid-Coordinate Ocean Model simulation of the WFS is used to identify Lagrangian coherent structures (LCSs), which reveal the presence of a robust and persistent cross-shelf transport barrier in approximately the same location as the boundary of the FZ. The location of the cross-shelf transport barrier undergoes a seasonal oscillation, being closer to the coast in the summer than in the winter. A month-long record of surface currents inferred from high-frequency (HF) radar measurements in a roughly 60 km ×\times 80 km region on the WFS off Tampa Bay is also used to identify LCSs, which reveal the presence of robust transient transport barriers. While the HF-radar-derived transport barriers cannot be unambiguously linked to the boundary of the FZ, this analysis does demonstrate the feasibility of monitoring transport barriers on the WFS using a HF-radar-based measurement system. The implications of a persistent cross-shelf transport barrier on the WFS for the development of harmful algal blooms on the shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter
    corecore