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ABSTRACT: The buckling load of thin-walled structures is known to be greatly affected by the presence of
imperfections. These imperfections can be based on e.g. geometry, material properties or loading. It has been
shown in the past that including these imperfections by the use of random fields can improve the robustness of
finite element models, especially of thin-walled structures. The current random field models are mainly based on
the assumption of an exponential correlation structure. Current evaluations of finite element models including
random fields are usually done by comparison with the experimental buckling loads. Since it is impossible to
include all the sources of imperfections in a finite element model, it is also impossible to single out the perfor-
mance of the random field model to represent one particular imperfection field. In contrast to current practice,
we propose to make a fair assessment of the quality of a random field model by comparing its predictions with
the failure loads of the finite element model instead of comparing them directly to the experimental buckling
loads. This method will be used to assess the quality of correlation functions and its sensitivities w.r.t. e.g. the
number of eigenvectors included. Additionally, a method based on principal component analysis is presented
and evaluated using the proposed methodology. Analysis of the limit load resulting from a finite element Monte
Carlo simulation using different correlation models showed that the standard correlation models can underes-
timate the buckling load reduction when not enough eigenvectors are taken into account. When the statistical
properties of the random fields have converged, the failure load might still be affected by including additional
eigenvectors. This makes it hard to predict the behavior of random fields based on covariance functions when
reducing the computational effort by reducing the number of eigenvectors. The random fields based on principal
component analysis show better performance at a lower computational cost.

1 INTRODUCTION

Thin-walled structures are widely spread in industry
due to their efficient load-bearing capabilities. Unfor-
tunately, the buckling load of these structures, a fail-
ure mode that is often catastrophic, is highly sensitive
to structural imperfections from e.g. geometry, mate-
rial properties, boundary conditions, etc. It is nowa-
days accepted that the absence of these imperfections
in the numerical models share the responsibility for
the discrepancies between experiments and numerical
predictions (Imbert 1971, Arbocz 2000). To include
the effects of imperfections in current deterministic

models, knock-down factors are used. Knock-down
factors are based on experiments, sometimes executed
as early as during the 1960’s, and tend to include
the effects of all present imperfections in a lumped
way (Arbocz & Starnes Jr 2002, Nemeth & Starnes Jr
1998). This renders the reduction of the knock-down
factor due to minimization of uncertainties of cer-
tain variables impossible. It is known that this leads
to overly conservative designs and that these knock-
down factors do not take the deviant behavior of com-
posite shells into account. In this day and age, finite
element software is a widely spread and accepted tool
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in structural analysis. To improve our understanding
of the buckling behavior of the structure under inves-
tigation, detailed information of the imperfections is
required (Schenk & Schuëller 2005). Based on this
information, a probabilistic framework can be created
to represent imperfections based on random fields (El-
ishakoff & Ren 1999, Stefanou 2009). Random fields
have been used in the past to model imperfect geome-
tries, material properties or loading (Bayer & Roos
2008, Broggi, Calvi, & Schuëller 2009). Research has
been primarily based on exponential covariance func-
tions that were fitted to measurement data in a limited
number of cases.

It is our opinion that a fair assessment of these mod-
els is lacking as they are usually compared to experi-
mental data that tend to be different from the numeri-
cal models due to numerical errors and the exclusions
of certain imperfections. In contrast to this approach,
the evaluations of the models in this contribution will
be assessed with respect to the limit loads obtained
from the measured imperfections applied to the fi-
nite element model. The differences in failure loads
are thus isolated from other uncertainties, numerical
errors or imperfections and originate solely from the
modeling of the random fields.

It is the goal to report on the results of this assess-
ment with real life data and propose some improve-
ments to keep the computational effort within bound-
aries. Section 2 will present the theory used to create
the stochastic framework. In section 3 the numerical
model and the measurement data will be presented.
The results of the investigations will be presented in
section 4, and section 5 will conclude on the findings.

2 THEORY

Based on experimental data the covariance functions
are derived and used to assemble a covariance matrix.
Using the Karhunen-Loève expansion, random fields
are generated and analyzed with a direct Monte Carlo
approach. In a similar way, principal component anal-
ysis is used.

2.1 Covariance functions

The covariance function contains the spatial variabil-
ity information of a random field and is used to as-
semble a covariance matrix that can later be expanded
into orthogonal functions (Ghanem & Spanos 1991).
In the past, a variety of covariance models have been
applied. Unfortunately, the verification of these func-
tions is often lacking, possibly due to lacking experi-
mental data.

In theory, every function that is symmetric and
positive definite can be used to assemble a covari-
ance matrix. Up until now, the exponential covari-
ance function has been the favorite as it is believed
to give a good representation of reality. Because of
the nondifferentiability of the exponential kernel at

zero, improvements have been proposed that allevi-
ate this problem (Spanos, Beer, & Red-Horse 2007).
The standardized exponential and Gaussian covari-
ance functions are given by resp. eq. 1 and 2:

C(h) = σ2 · exp
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Here, Lc represents the correlation length and h is
the lag between two points. Since it is often desired
to represent orthotropic random fields, with different
correlation lengths in different directions, a product
form of the correlations in the different directions is
often used:

C(r, θ) = σ2 · cr(r) · cθ(θ) (3)

An advantage of choosing a covariance function is
that one does not need specific data to the current ge-
ometry to assemble a covariance matrix and generate
the random fields.

2.2 The Karhunen-Loève expansion

The Karhunen-Loève expansion has been widely used
to generate random fields (Bucher 2009), next to alter-
natives such as e.g. the turning band method (Fenton
1990). Applying the Karhunen-Loève expansion on a
stochastic process U decomposes this process into a
set of orthonormal functions:

U(x,ω) = g(x) +
∞
∑

n=0

√

λnξn(ω)φn(x) (4)

where ξn(ω) is a sequence of orthogonal random vari-
ables, g(x) represents a mean function and λn and
φn(x) represent the eigenvalues and eigenvectors re-
spectively of the following integral equation:

∫

W
C(x1, x2)φn(x2)dx2 = λnφn(x1) (5)

In equation (5), C(x1, x2) represents the covariance
kernel and W is the domain of the random field. Be-
cause the covariance matrix is positive definite and
symmetric, the eigenfunctions are orthogonal and its
eigenvalues will be real. After discretization, using a
Galerkin procedure, equation (5) can be reduced to a
generalized eigenvalue problem that can be solved nu-
merically. A useful property of the Karhunen-Loève
expansion is that it converges in the mean square
sense. Truncation after M terms can considerably re-
duce the computational effort and will give the small-
est mean square error. During the following investi-
gations, it will be assumed that the process U can be
approximated by a Gaussian process.



2.3 Principal component analysis

Principal component analysis is used as a statistical
technique to decompose a set of observations into
its most important modes that are responsible for the
main part of its variance. Similarly to the Karhunen-
Loève expansion, these modes can be truncated and
used to simulate a random field with identical statis-
tical distribution as the observed imperfections. The
empirical covariance matrix can be calculated by:

C(xi, xj) = E[U(xi),U(xj)]− µi · µj (6)

Here, µi represents the mean value over the set of
measurements at a point xi.

Principal component analysis is widely used in
computational statistics such as data mining and
image compression. The main disadvantage of this
method over the use of a covariance function is that
one needs measurement data to perform the principal
component analysis, whereas the Karhunen-Loève
expansion as presented previously offers more flexi-
bility.

2.4 Monte Carlo simulation

A sample of N random fields was created using a di-
rect Monte Carlo approach. The direct Monte Carlo
approach was chosen over other approaches such as
Latin Hypercube Sampling because it allowed for
easy implementation with the generation of the ran-
dom fields and can be readily integrated with avail-
able, deterministic, finite element packages such as
Abaqus or Marc that are able to perform non-linear
analyses (Sachdeva, Nair, & Keane 2007). The mean
error resulting from a Monte Carlo simulation can be
estimated by:

eMC ∼

√

1

N
(7)

This shows that the error decreases independently of
the number of variables that are included. This is a
highly beneficial property of the Monte Carlo simula-
tion when dealing with big models and a high number
of variables to be investigated.

3 NUMERICAL ANALYSIS

To evaluate the effects of the random fields a non-
linear finite element buckling analysis was executed
using the commercial finite element package Abaqus.
This section will go deeper into the properties of the
finite element model and the imperfection data.

3.1 The finite element model

The cylinders that were measured and tested have the
following dimensions: a height of 500mm and a ra-
dius of 250mm (Tab. 1). To the average radius, the

Table 1: Design geometrical and lay-up properties of the cylin-
ders.

Property Value
Radius 250mm
Height 500mm
Thickness 0.5mm
Layers 4
Layup 24

◦/− 24
◦/41◦/− 41

◦

Table 2: Average local radius and standard deviation over the
samples within each set.

Set Sample Size Mean [mm] Standard Deviation[mm]
Set 1 3 250.78 0.321
Set 2 6 250.73 0.068

imperfections were added. The laminate thickness of
only 0.5mm causes the cylinders to be very imper-
fection sensitive. Boundary conditions are applied at
both ends of the model, allowing the rotational de-
grees of freedom at both ends of the cylinder to move.
One translational degree of freedom at one end of the
cylinder is left free to apply the compressive load.

Since the evaluation of the probabilistic model is
done with reference to the measured imperfections
applied to the same structural model and the main
goal of the study is to evaluate the quality of random
field models, boundary conditions could be simpli-
fied. A mesh convergence analysis was executed to
evaluate the mesh size and the element to be used.
It was concluded that a conventional linear, large-
strain element with four nodes and reduced integra-
tion scheme from the Abaqus element library and a
mesh with around 11.000 elements provided a good
balance between computational effort and accuracy.

A nonlinear finite element analysis was performed
to analyze the stability behavior of the cylinders under
investigation. Due to the high number of model eval-
uations necessary to perform the Monte Carlo anal-
ysis, it is necessary to reduce the user input during
the analysis by automating the process as much as
possible. Therefore, a load-driven arc-length proce-
dure was used to evaluate the load-bearing capacity
of the structure. Failure of the structure was defined
by a load drop of 20% compared to the highest load
reached during the previous increments. When this
load level was reached, the maximum load reached
during the complete analysis was defined as the limit
load of the structure. As no post-buckling analysis
was performed, the strains remain small and in the
elastic regime.

3.2 Analysis of the measured imperfections

The geometry of a set of 10 cylinders made of com-
posite material were measured and made available by
DLR (Degenhardt, Kling, Bethge, Orf, Kärger, Zim-
mermann, Rohwer, & Calvi 2010). Analysis of the
measurements allowed to evaluate the local geomet-
rical imperfection of the radius at around 200.000
points per cylinder. Due to the fine mesh, it was nec-
essary to decrease the mesh size for the finite ele-



Figure 1: Two histograms representative for the whole sample.

Figure 2: Cylinder which was identified as an outlier and was
removed from the set (IGS Z21). The main deformation mode
corresponds with a tilted cylinder.

ment analysis to around 11.000 points. To use these
measurements as the basis for a random field anal-
ysis, their statistical properties had to be analyzed
first. Evaluation of the probability distribution (Fig. 1)
shows that the assumption of a Gaussian distribution,
although not perfect, is acceptable. Further investiga-
tion of the standard deviation and mean showed that 2
sets with distinct properties could be identified (Tab.
2). In addition, by visual inspection an outlier was
identified which was removed from the set (Fig. 2).

Figure 3: Geometry of 2 example cylinders from the 2 sets. Note
the different correlation structures, where the axial correlation of
set 1 (IGS Z17) is higher than the one of set 2 (IGS Z26).

Figure 4: Comparison of the limit load of the ten cylinders. The
FE buckling load with imperfections is used in this study as the
reference limit load.

Table 3: Overview of the weight and number of eigenvectors at
different points.

Set 1

Number of eigenvectors Total weight of eigenvalues
103 92%
298 98%
500 99.12%
1000 99.62%
1500 99.78%
Set 2

Number of eigenvectors Total weight of eigenvalues
153 86%
500 95.18%
1000 97.81%
1500 98.74%

The identification of the sets also allowed to sep-
arate the correlation structures of both sets as they
also revealed to be different, which can be seen in
figure 3. The first, smaller set shows a considerably
larger standard deviation of the imperfections as well
as a stronger correlation in the axial direction than the
second set. Unfortunately, due to limited knowledge
of the production process we were unable to identify
the reason behind the existence of these 2 sets. As
is often the case, the correlation in axial direction is
higher as the correlation in radial direction. Earlier in-
vestigations of a variety of different correlation func-
tions showed that the effects of different covariance
functions are limited (De Groof, Oberguggenberger,
Haller, Degenhardt, & Kling 2012), so it was decided
to only use an exponential kernel during this analysis.

4 RESULTS

The methodologies described earlier are evaluated
and compared to the results obtained from the real
measurements. Figure 4 shows the different reference
values; the finite element solution without imperfec-
tions, the finite element solution with the measured
imperfections and the experimental buckling load. To
remove the discrepancies inherent to modeling, the
following comparisons are made to the finite element
solution with the measured imperfections.



Figure 5: Figure showing the dependence of the limit load on the
small eigenvectors. (a) uses the summed weight of the included
eigenvalues as a measure, (b) only uses the number of eigenvec-
tors included in the truncation.

4.1 Karhunen-Loève Expansion

To make the Karhunen-Loève expansion, the covari-
ance matrix is assembled using an orthotropic, expo-
nential covariance kernel. As explained earlier, based
on the values of the eigenvalues, it is possible to trun-
cate the expansion and reduce the computational ef-
fort involved in solving the eigenvalue problem con-
siderably. However, the question when to truncate the
expansion rises. Therefore, a study of the effect of the
small eigenvectors was performed. At different trun-
cation values, the average failure load of a sample of
size 100 was calculated. For an overview, see table 3.

As is shown in Fig. 5, using the weight of the eigen-
values can be a misleading guideline. A few 10ths of
a percent difference can reduce the average buckling
load considerably. Especially for a structure with a
high correlation, a lot of the weight is concentrated in
the largest eigenvalues. These eigenvalues are linked
to the low frequency modes in the Karhunen-Loève
expansion. The structure under investigation is, due
to its material, failure mode and slenderness, highly
sensitive to small imperfections. Using only a small
number of eigenvectors, which might be sufficient ac-
cording to weight of the eigenvalues, can omit these
important frequencies. Using the number of largest
eigenvalues in a convergence analysis provides a more
predictable convergence behavior as using the weight
of the largest eigenvalues.

4.2 Principal Component Analysis

Another approach is to apply a principal component
analysis on the measurement data. The principal com-
ponent analysis connects the measurement data di-

Figure 6: Results of the Monte Carlo simulation using the princi-
pal components of the two sets to assemble the random fields. (a)
uses the components to simulate set 1, (b) uses the components
of set 2.

rectly to the covariance matrix. Hence, assuming that
the measurements are a valid and complete represen-
tation of the main characteristics of the imperfections
is paramount. The results of the Monte Carlo simula-
tion (sample size 100) are shown in figure 6.

From the figure, it becomes clear that the princi-
pal component analysis can give a good representa-
tion, under the condition that the sample size of the
measurements is large enough. Knowing more of the
production process will increase the understanding of
the origin of the principal components. One could e.g.
investigate the correlation between the failure load
and the weight of the component in the random field.
This was done in the current study, but no correlations
could be found between a specific component and the
failure load.

4.3 Artificial local imperfections

As was shown earlier in this contribution, there ex-
ists a high correlation between increasing the num-
ber of eigenvectors included in the Karhunen-Loève
expansion and the limit load. Solving the eigenvalue
problem is computationally expensive, especially if it
needs to be solved for a high number of eigenvectors
including small eigenvalues. Since these small eigen-
values can be linked to the small imperfections, the
question was raised if these small imperfections can
be added manually without the need of solving an
eigenvalue problem.

The approach evaluated here consists of solving the
eigenvalue problem for a limited number of eigen-
vectors - so the truncated Karhunen-Loève expansion
simulates the smooth imperfections - and to add the
local imperfections manually. These local imperfec-



Figure 7: Figure comparing the effect of adding smooth local-
ized imperfections. (a) shows a random field with 30 eigenvec-
tors. (b) uses an identical number of eigenvectors with localized
imperfections added.

tions are simulated by small two-dimensional Gaus-
sian shape functions. The size, location and amplitude
of the imperfections are randomized and repeatedly
added to the smooth random field created with the
Karhunen-Loève expansion. The amplitude of the lo-
cal imperfections also takes the amplitude of the ran-
dom field into account, so excessive imperfections are
not present. Figure 7 shows a random field with and
without the localized imperfections.

Generating these localized imperfections evidently
requires some knowledge of the process to be mod-
eled to determine limits for the size and amplitudes
of the small localized imperfections. This approach is
motivated by the observation that the buckling is ini-
tiated locally. It combines a realistic geometrical im-

Figure 8: Results of the Monte Carlo simulation using only 30
eigenvectors to simulate the main random field. (b) enriching the
smooth random field with small, localized imperfections.

perfection with local, artificial initiators (Winterstet-
ter & Schmidt 2002). As the results show in figure 8,
adding smooth localized imperfections can reproduce
the buckling behavior correctly. This is noteworthy as
the generated imperfections are not larger in size as
the original measured imperfections.

5 CONCLUSIONS

In this paper it was shown that the use of the
Karhunen-Loève expansion to model geometrical im-
perfections can be misleading. Especially the effect of
truncating the expansion can have a large effect on the
response. The effect of small changes in the random
field model on the structural model might be ampli-
fied due to the nonlinearity and can be larger as the
statistical indicators show.

An alternative and more effective way is the use of
a principal component analysis. This approach works
well under the assumption that measurement data is
available and its sample size is large enough which
might also render its use impractical.

To reduce the computational cost of the eigenvalue
problem, an alternative approach combining smooth
random fields with artificial localized imperfections is
evaluated. The localized imperfections initiate the lo-
calized buckling mode that was observed in the non-
smooth random fields and reduce the computational
cost considerably. The amplitude was one of the vari-
ables that was randomized, but truncated so imperfec-
tions could not grow larger as observed in the mea-
sured samples. Results show that this approach can
reproduce the behavior of the measured samples, but
it also requires a higher degree of experience as the
user needs to create realistic localized imperfections.

As an important conclusion, we state that the vali-
dation of stochastic models is necessary before apply-
ing them to engineering problems. Comparing results
directly with experimental buckling loads might be
misleading due to discrepancies between the model
and reality. Especially for shell structures, these
discrepancies can result in misleading conclusions.
Therefore, it is proposed to evaluate the stochastic
model by direct comparison with finite element com-
putations using the measured imperfections.
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